Free Access
Med Sci (Paris)
Volume 33, Number 2, Février 2017
Page(s) 176 - 182
Section M/S Revues
Published online 27 February 2017
  1. Jaisson S, Gillery P. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clin Chem 2010 ; 56 : 1401–1412. [CrossRef] [PubMed] [Google Scholar]
  2. Migdal C, Serres M. Espèces réactives de l’oxygène et stress oxydant. Med Sci (Paris) 2011 ; 27 : 405–412. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Hohn A, Konig J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. J Proteomics 2013 ; 92 : 132–159. [Google Scholar]
  4. Witko-Sarsat V, Gausson V, Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins? Kidney Int 2003 (suppl) : S11–S14. [Google Scholar]
  5. Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 2008 ; 283 : 21837–21841. [CrossRef] [PubMed] [Google Scholar]
  6. Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2008 ; 153 : 6–20. [Google Scholar]
  7. Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol (Paris) 2010 ; 58 : 214–219. [CrossRef] [PubMed] [Google Scholar]
  8. Sacks DB, Bruns DE, Goldstein DE, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002 ; 48 : 436–472. [PubMed] [Google Scholar]
  9. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991 ; 40 : 405–412. [CrossRef] [PubMed] [Google Scholar]
  10. Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 2015 ; 458 : 221–226. [CrossRef] [PubMed] [Google Scholar]
  11. Rabbani N, Thornalley PJ. The dicarbonyl proteome : proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease. Ann NY Acad Sci 2008 ; 1126 : 124–127. [CrossRef] [Google Scholar]
  12. Jaisson S, Pietrement C, Gillery P. Carbamylation-derived products : bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis. Clin Chem 2011 ; 57 : 1499–1505. [CrossRef] [PubMed] [Google Scholar]
  13. Stark GR, Stein WH, Moore S. Reaction of cyanate present in aqueous urea with amino acids and proteins. J Biol Chem 1960 ; 235 : 3177–3181. [Google Scholar]
  14. Wang Z, Nicholls SJ, Rodriguez ER, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 2007 ; 13 : 1176–1184. [CrossRef] [PubMed] [Google Scholar]
  15. Sirpal S. Myeloperoxidase-mediated lipoprotein carbamylation as a mechanistic pathway for atherosclerotic vascular disease. Clin Sci (Lond) 2009 ; 116 : 681–695. [CrossRef] [PubMed] [Google Scholar]
  16. Roberts JM, Veres PR, Cochran AK, et al. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proc Natl Acad Sci USA 2011 ; 108 : 8966–8971. [CrossRef] [Google Scholar]
  17. Raghav A, Ahmad J, Alam K. Impact of glycation on structural and antioxidant function of human serum albumin : relevance in diabetic complications. Diabetes Metab Syndr 2016 ; 10 : 96–101. [CrossRef] [PubMed] [Google Scholar]
  18. Simons ER, Hartzband P, Whitin J, Chapman C. Circular dichroism studies of cyanate-induced conformational changes in hemoglobins A and S. Biochemistry 1976 ; 15 : 4059–4064. [CrossRef] [PubMed] [Google Scholar]
  19. Jaisson S, Gillery P. Impaired proteostasis : role in the pathogenesis of diabetes mellitus. Diabetologia 2014 ; 57 : 1517–1527. [CrossRef] [PubMed] [Google Scholar]
  20. Usui K, Hulleman JD, Paulsson JF, et al. Site-specific modification of Alzheimer’s peptides by cholesterol oxidation products enhances aggregation energetics and neurotoxicity. Proc Natl Acad Sci USA 2009 ; 106 : 18563–18568. [CrossRef] [Google Scholar]
  21. Reddy GK, Stehno-Bittel L, Enwemeka CS. Glycation-induced matrix stability in the rabbit achilles tendon. Arch Biochem Biophys 2002 ; 399 : 174–180. [CrossRef] [PubMed] [Google Scholar]
  22. Yoshinaga E, Kawada A, Ono K, et al. N(epsilon)-(carboxymethyl)lysine modification of elastin alters its biological properties : implications for the accumulation of abnormal elastic fibers in actinic elastosis. J Invest Dermatol 2012 ; 132 : 315–323. [Google Scholar]
  23. Shi J, Knevel R, Suwannalai P, et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc Natl Acad Sci USA 2011 ; 108 : 17372–17377. [CrossRef] [Google Scholar]
  24. Boyd AC, Abdel-Wahab YH, McKillop AM, et al. Impaired ability of glycated insulin to regulate plasma glucose and stimulate glucose transport and metabolism in mouse abdominal muscle. Biochim Biophys Acta 2000 ; 1523 : 128–134. [Google Scholar]
  25. Hamelin M, Mary J, Vostry M, et al. Glycation damage targets glutamate dehydrogenase in the rat liver mitochondrial matrix during aging. FEBS J 2007 ; 274 : 5949–5961. [CrossRef] [PubMed] [Google Scholar]
  26. Tian SF, Toda S, Higashino H, Matsumura S. Glycation decreases the stability of the triple-helical strands of fibrous collagen against proteolytic degradation by pepsin in a specific temperature range. J Biochem 1996 ; 120 : 1153–1162. [CrossRef] [PubMed] [Google Scholar]
  27. Jaisson S, Larreta-Garde V, Bellon G, et al. Carbamylation differentially alters type I collagen sensitivity to various collagenases. Matrix Biol 2007 ; 26 : 190–196. [CrossRef] [PubMed] [Google Scholar]
  28. Kuckel CL, Lubit BW, Lambooy PK, Farnsworth PN. Methylisocyanate and actin polymerization : the in vitro effects of carbamylation. Biochim Biophys Acta 1993 ; 1162 : 143–148. [Google Scholar]
  29. Mellado W, Slebe JC, Maccioni RB. Tubulin carbamoylation. Functional amino groups in microtubule assembly. Biochem J 1982 ; 203 : 675–681. [CrossRef] [PubMed] [Google Scholar]
  30. Bai P, Phua K, Hardt T, et al. Glycation alters collagen fibril organization. Connect Tissue Res 1992 ; 28 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  31. Reigle KL, Di Lullo G, Turner KR, et al. Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion. J Cell Biochem 2008 ; 104 : 1684–1698. [CrossRef] [PubMed] [Google Scholar]
  32. Apostolov EO, Ok E, Burns S, et al. Carbamylated-oxidized LDL : proatherosclerotic effects on endothelial cells and macrophages. J Atheroscler Thromb 2013 ; 20 : 878–892. [Google Scholar]
  33. Yan SF, Ramasamy R, Schmidt AM. The RAGE axis : a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 2010 ; 106 : 842–853. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  34. Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001 ; 108 : 1853–1863. [Google Scholar]
  35. Tanikawa T, Okada Y, Tanikawa R, Tanaka Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J Vasc Res 2009 ; 46 : 572–580. [CrossRef] [PubMed] [Google Scholar]
  36. Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000 ; 275 : 39027–39031. [CrossRef] [PubMed] [Google Scholar]
  37. Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins : possible evolutionary significance. Science 1981 ; 213 : 222–224. [CrossRef] [PubMed] [Google Scholar]
  38. Sharma SD, Pandey BN, Mishra KP, Sivakami S. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro. J Biochem Mol Biol Biophys 2002 ; 6 : 233–242. [Google Scholar]
  39. Thornalley PJ, Glyoxalase I. structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 2003 ; 31 : 1343–1348. [Google Scholar]
  40. Boschi-Muller S, Branlant G. Methionine sulfoxide reductase : chemistry, substrate binding, recycling process and oxidase activity. Bioorg Chem 2014 ; 57 : 222–230. [CrossRef] [PubMed] [Google Scholar]
  41. Delpierre G, Rider MH, Collard F, et al. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes 2000 ; 49 : 1627–1634. [CrossRef] [PubMed] [Google Scholar]
  42. Gorisse L, Pietrement C, Vuiblet V, et al. Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci USA 2016 ; 113 : 1191–1196. [CrossRef] [Google Scholar]
  43. Simm A. Protein glycation during aging and in cardiovascular disease. J Proteomics 2013 ; 92 : 248–259. [Google Scholar]
  44. Gorisse L, Jaisson S, Pietrement C, Gillery P. Carbamylation des protéines : quand vieillissements protéique et chronologique se rejoignent. Med Sci (Paris) 2016 ; 32 : 684–686. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.