Free Access
Issue |
Med Sci (Paris)
Volume 32, Number 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
|
|
---|---|---|
Page(s) | 999 - 1002 | |
Section | Le microbiote : cet inconnu qui réside en nous | |
DOI | https://doi.org/10.1051/medsci/20163211016 | |
Published online | 23 December 2016 |
- Cordain L, Eaton SB, Sebastian A, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005 ; 81 : 341–354. [PubMed] [Google Scholar]
- Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016 ; 529 : 212–215. [CrossRef] [PubMed] [Google Scholar]
- Clayton JB, Vangay P, Huang H, et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA 2016 ; 113 : 10376–10381. [CrossRef] [Google Scholar]
- Eaton S, Eaton S, III, Konner M. Paleolithic nutrition revisited: A twelve-year retrospective on its nature and implications. Eur J Clin Nutr 1997 ; 51 : 207–216. [CrossRef] [PubMed] [Google Scholar]
- De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010 ; 107 : 14691–14696. [Google Scholar]
- Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 2016 ; 14 : 273–287. [CrossRef] [PubMed] [Google Scholar]
- Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016 ; 22 : 598–605. [CrossRef] [PubMed] [Google Scholar]
- Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 ; 464 : 59–65. [CrossRef] [PubMed] [Google Scholar]
- Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015 ; 528 : 262–266. [CrossRef] [PubMed] [Google Scholar]
- Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016 ; 535 : 376–381. [CrossRef] [PubMed] [Google Scholar]
- Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013 ; 500 : 585–588. [CrossRef] [PubMed] [Google Scholar]
- Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010 ; 7 : 335–336. [Google Scholar]
- Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011 ; 473 : 174–180. [CrossRef] [PubMed] [Google Scholar]
- Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012 ; 486 : 222–227. [CrossRef] [PubMed] [Google Scholar]
- Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011 ; 334 : 105–108. [CrossRef] [PubMed] [Google Scholar]
- Kultima JR, Coelho LP, Forslund K, et al. MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 2016 ; 32 : 2520–2523. [CrossRef] [PubMed] [Google Scholar]
- Treangen TJ, Koren S, Sommer DD, et al. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol 2013 ; 14 : R2. [CrossRef] [PubMed] [Google Scholar]
- Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012 ; 9 : 811–814. [CrossRef] [PubMed] [Google Scholar]
- Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res 2007 ; 17 : 377–386. [CrossRef] [PubMed] [Google Scholar]
- Heintz-Buschart A, May P, Laczny CC, et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2016 ; 2 : 16180. [CrossRef] [PubMed] [Google Scholar]
- Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009 ; 37 : D233–D2D8. [CrossRef] [PubMed] [Google Scholar]
- Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014 ; 42 : D199–D205. [Google Scholar]
- Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014 ; 10 : 766. [CrossRef] [PubMed] [Google Scholar]
- McNulty NP, Wu M, Erickson AR, et al. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol 2013 ; 11 : e1001637. [CrossRef] [PubMed] [Google Scholar]
- Scholz M, Ward DV, Pasolli E, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Meth 2016 ; 13 : 435–438. [CrossRef] [Google Scholar]
- Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome. Nature 2013 ; 493 : 45–50. [CrossRef] [PubMed] [Google Scholar]
- Maldonado-Gómez María X, Martínez I, Bottacini F, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 2016 ; 20 : 515–526. [CrossRef] [PubMed] [Google Scholar]
- Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015 ; 163 : 1079–1094. [CrossRef] [PubMed] [Google Scholar]
- Salonen A, Lahti L, Salojarvi J, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 2014 ; 8 : 2218–2230. [CrossRef] [PubMed] [Google Scholar]
- Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J 2016 ; 10 : 170–182. [CrossRef] [PubMed] [Google Scholar]
- Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 2015 ; 22 : 971–982. [CrossRef] [PubMed] [Google Scholar]
- Zhang C, Derrien M, Levenez F, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J 2016 ; 10 : 2235–2245. [CrossRef] [PubMed] [Google Scholar]
- Knights D, Costello EK, Knight R. Supervised classification of human microbiota. FEMS Microbiol Rev 2011 ; 35 : 343–359. [CrossRef] [PubMed] [Google Scholar]
- Burcelin R, Nicolas S, Blasco-Baque V. Microbiotes et maladies métaboliques : de nouveaux concepts pour de nouvelles stratégies thérapeutiques. Med Sci (Paris) 2016 ; 32 : 952–960. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Rahmouni O, Dubuquoy L, Desreumaux P, Neut C. Microbiote intestinal et développement des maladies inflammatoires chroniques de l’intestin. Med Sci (Paris) 2016 ; 32 : 968–973. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gaboriau-Routhiau V, Cerf-Bensussan N. Microbiote intestinal et développement du système immunitaire. Med Sci (Paris) 2016 ; 32 : 961–967. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lamas B, Richard ML, Sokol H. CARD9 et colite : un pont entre dysbiose et immunité. Med Sci (Paris) 2016 ; 32 : 933–936. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Weissenbach J, Sghir A. Microbiotes et Métagénomique. Med Sci (Paris) 2016 ; 32 : 937–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.