Free Access
Issue
Med Sci (Paris)
Volume 32, Number 2, Février 2016
Page(s) 192 - 197
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163202013
Published online 02 March 2016
  1. Chazaud C. L’embryogenèse précoce des mammifères : premières différenciations cellulaires et cellules souches. Med Sci (Paris) 2008 ; 24 : 1043–1048. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Sasaki H. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Semin Cell Dev Biol 2015 ; 47–48 : 80–87. [CrossRef] [PubMed] [Google Scholar]
  3. Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 2006 ; 10 : 615–624. [CrossRef] [PubMed] [Google Scholar]
  4. Guo G, Huss M, Tong GQ, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 2010 ; 18 : 675–685. [CrossRef] [PubMed] [Google Scholar]
  5. Nichols J, Silva J, Roode M, Smith A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 2009 ; 136 : 3215–3222. [CrossRef] [PubMed] [Google Scholar]
  6. Yamanaka Y, Lanner F, Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 2010 ; 137 : 715–724. [CrossRef] [PubMed] [Google Scholar]
  7. Chambers I, Silav J, Colby D, et al. Nanog safeguards pluripotency and mediates germline development. Nature 2007 ; 450 : 1230–1234. [CrossRef] [PubMed] [Google Scholar]
  8. J. Silva J, Nichols J, Theunissen TW, et al. Nanog is the gateway to the pluripotent ground state. Cell 2009 ; 138 : 722–737. [CrossRef] [PubMed] [Google Scholar]
  9. Cai KQ, Capo-Chichi CD, Rula ME, et al. Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis. Dev Dyn 2008 ; 237 : 2820–2829. [CrossRef] [PubMed] [Google Scholar]
  10. Frankenberg S, Gerbe F, Bessonnard S, et al. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev Cell 2011 ; 21 : 1005–1013. [CrossRef] [PubMed] [Google Scholar]
  11. Messerschmidt DM, Kemler R. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev Biol 2010 ; 344 : 129–137. [CrossRef] [PubMed] [Google Scholar]
  12. Bessonnard S, De Mot L, Gonze D, et al. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 2014 ; 141 : 3637–3648. [CrossRef] [PubMed] [Google Scholar]
  13. Kang M, Piliszek A, Artus J, Hadjantonakis AK. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 2013 ; 140 : 267–279. [CrossRef] [PubMed] [Google Scholar]
  14. Krawchuk D, Honma-Yamanaka N, Anani S. Yamanaka Y. FGF4 is a limiting factor controlling the proportions of primitive endoderm and epiblast in the ICM of the mouse blastocyst. Dev Biol 2013 ; 384 : 65–71. [CrossRef] [PubMed] [Google Scholar]
  15. Nghe P, Boulineau S, Tans SJ. Fluctuations aléatoires dans le métabolisme et la croissance cellulaires. Med Sci (Paris) 2015 ; 31 : 233–235. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.