Free Access
Issue
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 85 - 92
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163201014
Published online 05 February 2016
  1. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull 2001 ; 60 : 5–20. [CrossRef] [PubMed] [Google Scholar]
  2. Ravelli AC, van der Meulen JH, Michels RP, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998 ; 351 : 173–177. [CrossRef] [PubMed] [Google Scholar]
  3. Lussana F, Painter RC, Ocke MC, et al. Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. Am J Clin Nutr 2008 ; 88 : 1648–1652. [CrossRef] [PubMed] [Google Scholar]
  4. Stein AD, Rundle A, Wada N, et al. Associations of gestational exposure to famine with energy balance and macronutrient density of the diet at age 58 years differ according to the reference population used. J Nutr 2009 ; 139 : 1555–1561. [CrossRef] [PubMed] [Google Scholar]
  5. Amarger V, Parnet P, Vaiserman A, Lumey LH. Early life nutrition and long term appetite regulation. Early life nutrition, adult health, and development: Lessons from changing dietary patterns, famines, and experimental studies. New york: Nova Science Publishers, 2012. [Google Scholar]
  6. Gao Q, Horvath TL. Neurobiology of feeding and energy expenditure. Ann Rev Neurosci 2007 ; 30 : 367–398. [CrossRef] [Google Scholar]
  7. Du Luquet S. nouveau dans la régulation de la prise alimentaire ? Med Sci (Paris) 2008 ; 24 : 680–682. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Bouret SG. Être connecté pour mieux manger. Med Sci (Paris) 2004 ; 20 : 958–959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004 ; 304 : 108–110. [CrossRef] [PubMed] [Google Scholar]
  10. Delahaye F, Breton C, Risold P-Y, et al. Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology 2008 ; 149 : 470–475. [CrossRef] [PubMed] [Google Scholar]
  11. Coupe B, Amarger V, Grit I, et al. Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology 2010 ; 151 : 702–713. [CrossRef] [PubMed] [Google Scholar]
  12. Davidowa H, Plagemann A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport 2000 ; 11 : 2795–2798. [CrossRef] [PubMed] [Google Scholar]
  13. Desai M, Li T, Ross MG. Hypothalamic neurosphere progenitor cells in low birth-weight rat newborns: Neurotrophic effects of leptin and insulin. Brain Res 2011 ; 1378 : 29–42. [CrossRef] [PubMed] [Google Scholar]
  14. Toran-Allerand CD, Ellis L, Pfenninger KH. Estrogen and insulin synergism in neurite growth enhancement in vitro: mediation of steroid effects by interactions with growth factors? Dev Brain Res 1988 ; 41 : 87–100. [CrossRef] [Google Scholar]
  15. Zheng H, Lenard NR, Shin AC, et al. Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals. Int J Obes 2009 ; 33 : Suppl 2 S8–13. [CrossRef] [PubMed] [Google Scholar]
  16. Rolls ET. Taste, olfactory and food texture reward processing in the brain and obesity. Int J Obes 2011 ; 35 : 550–561. [CrossRef] [PubMed] [Google Scholar]
  17. Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 2007 ; 32 : 2267–2278. [CrossRef] [PubMed] [Google Scholar]
  18. Pecina S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 2005 ; 25 : 11777–11786. [CrossRef] [PubMed] [Google Scholar]
  19. Petit O, Basso F, Huguet P, et al. Apport des neurosciences de la décision à l’étude des comportements alimentaires et de l’obésité : imagerie et cognition. Med Sci (Paris) 2011 ; 27 : 1000–1008. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Antonopoulos J, Dori I, Dinopoulos A, et al. Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 2002 ; 110 : 245–256. [CrossRef] [PubMed] [Google Scholar]
  21. Naef L, Moquin L, Dal Bo G, et al. Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience 2011 ; 176 : 225–236. [CrossRef] [PubMed] [Google Scholar]
  22. Ong ZY, Muhlhausler BS. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J 2011 ; 25 : 2167–2179. [CrossRef] [PubMed] [Google Scholar]
  23. Migraine A, Nicklaus S, Parnet P, et al. Effect of preterm birth and birth weight on eating behavior at 2 y of age. Am J Clin Nutr 2013 ; 97 : 1270–1277. [CrossRef] [PubMed] [Google Scholar]
  24. Brion MJ, Ness AR, Rogers I, et al. Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr 2010 ; 91 : 748–756. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang GH, Chen ML, Liu SS, et al. Effects of mother’s dietary exposure to acesulfame-K in pregnancy or lactation on the adult offspring’s sweet preference. Chem Senses 2011 ; 36 : 763–770. [CrossRef] [PubMed] [Google Scholar]
  26. Todrank J, Heth G, Restrepo D. Effects of in utero odorant exposure on neuroanatomical development of the olfactory bulb and odour preferences. Proc Biol Sci 2011 ; 278 : 1949–1955. [CrossRef] [PubMed] [Google Scholar]
  27. Youngentob SL, Kent PF, Sheehe PR, et al. Experience-induced fetal plasticity: the effect of gestational ethanol exposure on the behavioral and neurophysiologic olfactory response to ethanol odor in early postnatal and adult rats. Behav Neurosci 2007 ; 121 : 1293–1305. [CrossRef] [PubMed] [Google Scholar]
  28. Mennella JA, Griffin CE, Beauchamp GK. Flavor programming during infancy. Pediatrics 2004 ; 113 : 840–845. [CrossRef] [PubMed] [Google Scholar]
  29. Delaunay-El Allam M, Soussignan R, Patris B, et al. Long-lasting memory for an odor acquired at the mother’s breast. Dev Sci 2010; 13 : 849–863. [CrossRef] [PubMed] [Google Scholar]
  30. Hepper PG, Wells DL, Dornan JC, et al. Long-term flavor recognition in humans with prenatal garlic experience. Dev Psychobiol 2013 ; 55 : 568–574. [CrossRef] [PubMed] [Google Scholar]
  31. Haller R, Rummel C, Henneberg S, et al. The influence of early experience with vanillin on food preference later in life. Chem Senses 1999 ; 24 : 465–467. [CrossRef] [PubMed] [Google Scholar]
  32. Liem DG, Westerbeek A, Wolterink S, et al. Sour taste preferences of children relate to preference for novel and intense stimuli. Chem Senses 2004 ; 29 : 713–720. [CrossRef] [PubMed] [Google Scholar]
  33. Yang G, Lim CY, Li C, et al. FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1. J Biol Chem 2009 ; 284 : 3719–3727. [CrossRef] [PubMed] [Google Scholar]
  34. Plagemann A, Harder T, Brunn M, et al. Hypothalamic POMC promoter methylation becomes altered by early overfeeding: An epigenetic model of obesity and the metabolic syndrome. J Physiol 2009 ; 587 : 4963–4976. [CrossRef] [PubMed] [Google Scholar]
  35. Vucetic Z, Kimmel J, Totoki K, et al. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010 ; 151 : 4756–4764. [CrossRef] [PubMed] [Google Scholar]
  36. Carlin J, George R, Reyes TM. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. PLoS One 2013 ; 8 : e63549. [CrossRef] [PubMed] [Google Scholar]
  37. Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 2014 ; 17 : 89–96. [CrossRef] [PubMed] [Google Scholar]
  38. Orozco-Solis R, Matos RJ, Guzman-Quevedo O, et al. Nutritional programming in the rat is linked to long-lasting changes in nutrient sensing and energy homeostasis in the hypothalamus. PLoS One 2010 ; 5 : e13537. [CrossRef] [PubMed] [Google Scholar]
  39. Szeto IM, Das PJ, Aziz A, et al. Multivitamin supplementation of Wistar rats during pregnancy accelerates the development of obesity in offspring fed an obesogenic diet. Int J Obes 2009 ; 33 : 364–372. [CrossRef] [PubMed] [Google Scholar]
  40. Cho CE, Sanchez-Hernandez D, Reza-Lopez SA, et al. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics 2013 ; 8 : 710–719. [CrossRef] [PubMed] [Google Scholar]
  41. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008 ; 105 : 17046–17049. [CrossRef] [Google Scholar]
  42. Chang GQ, Gaysinskaya V, Karatayev O, et al. Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 2008 ; 28 : 12107–12119. [CrossRef] [PubMed] [Google Scholar]
  43. Gugusheff JR, Vithayathil M, Ong ZY, et al. The effects of prenatal exposure to a ‘junk food’ diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation. J Dev Orig Health Dis 2013 ; 4 : 348–357. [CrossRef] [PubMed] [Google Scholar]
  44. Teegarden SL, Scott AN, Bale TL. Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience 2009 ; 162 : 924–932. [CrossRef] [PubMed] [Google Scholar]
  45. Gorski JN, Dunn-Meynell AA, Hartman TG, et al. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am J Physiol Regul Integr Comp Physiol 2006 ; 291 : R768–R778. [CrossRef] [PubMed] [Google Scholar]
  46. Breton C, Lukaszewski MA, Risold PY, et al. Maternal prenatal undernutrition alters the response of POMC neurons to energy status variation in adult male rat offspring. Am J Physiol Endocrinol Metab 2009 ; 296 : E462–E472. [CrossRef] [PubMed] [Google Scholar]
  47. Coupe B, Grit I, Hulin P, et al. Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis. PLoS One 2012 ; 7 : e30616. [CrossRef] [PubMed] [Google Scholar]
  48. Coupe B, Grit I, Darmaun D, et al. The timing of “catch-up growth” affects metabolism and appetite regulation in male rats born with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2009 ; 297 : R813–R824. [CrossRef] [PubMed] [Google Scholar]
  49. Orozco-Solis R, Lopes de Souza S, Barbosa Matos RJ, et al. Perinatal undernutrition-induced obesity is independent of the developmental programming of feeding. Physiol Behav 2009 ; 96 : 481–492. [CrossRef] [PubMed] [Google Scholar]
  50. Remmers F, Verhagen LA, Adan RA, et al. Hypothalamic neuropeptide expression of juvenile and middle-aged rats after early postnatal food restriction. Endocrinology 2008 ; 149 : 3617–3625. [CrossRef] [PubMed] [Google Scholar]
  51. Bouret SG, Simerly RB. Development of leptin-sensitive circuits. J Neuroendocrinol 2007 ; 19 : 575–582. [CrossRef] [PubMed] [Google Scholar]
  52. Ishii Y, Bouret SG. Embryonic birthdate of hypothalamic leptin-activated neurons in mice. Endocrinology 2012 ; 153 : 3657–3667. [CrossRef] [PubMed] [Google Scholar]
  53. Venance L, Maldonado R, Manzoni O. Le système endocannabinoïde central. Med Sci (Paris) 2004 ; 20 : 45–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Goldbeter A, Gérard C, Leloup JC. Biologie des systèmes et rythmes cellulaires. Med Sci (Paris) 2010 ; 26 : 49–56. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.