Free Access
Issue
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 74 - 80
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163201012
Published online 05 February 2016
  1. Dupont C, Cordier AG, Junien C, et al. Maternal environment and the reproductive function of the offspring. Theriogenology 2012 ; 78 : 1405–1414. [CrossRef] [PubMed] [Google Scholar]
  2. Jarreau PH. La prématurité. Med Sci (Paris) 2013 ; 29 : 819–820. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Irving RJ, Belton NR, Elton RA, Walker BR. Adult cardiovascular risk factors in premature babies. Lancet 2000 ; 355 : 2135–2136. [CrossRef] [PubMed] [Google Scholar]
  4. Ozanne SE, Constancia M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab 2007 ; 3 : 539–546. [CrossRef] [PubMed] [Google Scholar]
  5. Rossi P, Tauzin L, Marchand E, et al. Respective roles of preterm birth and fetal growth restriction in blood pressure and arterial stiffness in adolescence. J Adolesc Health 2011 ; 48 : 520–522. [CrossRef] [PubMed] [Google Scholar]
  6. Lapillonne A, Griffin IJ. Feeding preterm infants today for later metabolic and cardiovascular outcomes. J Pediatr 2013 ; 162 (suppl 3) : S7–16. [CrossRef] [PubMed] [Google Scholar]
  7. Hack M, Flannery DJ, Schluchter M, et al. Outcomes in young adulthood for very-low-birth-weight infants. N Engl J Med 2002 ; 346 : 149–157. [CrossRef] [PubMed] [Google Scholar]
  8. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004 ; 304 : 108–110. [CrossRef] [PubMed] [Google Scholar]
  9. Guellec I, Lapillonne A, Renolleau S, et al. Neurologic outcomes at school age in very preterm infants born with severe or mild growth restriction. Pediatrics 2011 ; 127 : e883–e891. [CrossRef] [PubMed] [Google Scholar]
  10. Zana-Taïeb E, Jarreau PH. Retard de croissance intra-utérin et dysplasie bronchopulmonaire. Med Sci (Paris) 2013 ; 29 : 826–828. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Canoy D, Pekkanen J, Elliott P, et al. Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax 2007 ; 62 : 396–402. [CrossRef] [PubMed] [Google Scholar]
  12. Mayeur S, Lancel S, Theys N, et al. Maternal calorie restriction modulates placental mitochondrial biogenesis and bioenergetic efficiency: putative involvement in fetoplacental growth defects in rats. Am J Physiol Endocrinol Metab 2013 ; 304 : E14–E22. [CrossRef] [PubMed] [Google Scholar]
  13. Butruille L, Mayeur S, Moitrot E, et al. Maternal hypertension induced by NO blockade does not program adult metabolic diseases in growth-restricted rat fetuses. Metabolism 2013 ; 62 : 442–445. [CrossRef] [PubMed] [Google Scholar]
  14. Abdennebi-Najar L, Djiane J. Le modèle porcin naturel de retard de croissance pour l’étude de la programmation métabolique et l’obésité. Med Nutr 2009 ; 45 : 32–36. [CrossRef] [EDP Sciences] [Google Scholar]
  15. Morise A, Seve B, Mace K, et al. Impact of intrauterine growth retardation and early protein intake on growth, adipose tissue, and the insulin-like growth factor system in piglets. Pediatr Res 2009 ; 65 : 45–50. [CrossRef] [PubMed] [Google Scholar]
  16. D’Inca R, Kloareg M. Gras-Le Guen C, Le Huerou-Luron I. Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs. J Nutr 2010 ; 140 : 925–931. [CrossRef] [PubMed] [Google Scholar]
  17. Attig L, Brisard D, Larcher T, et al. Postnatal leptin promotes organ maturation and development in IUGR piglets. PLoS One 2013 ; 8 : e64616. [CrossRef] [PubMed] [Google Scholar]
  18. Coupe B, Grit I, Hulin P, et al. Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis. PLoS One 2012 ; 7 : e30616. [CrossRef] [PubMed] [Google Scholar]
  19. Delamaire E, Parnet P, Coupe B, et al. Long term metabolic impact of high protein neonatal feeding: a preliminary study in male rat pups born with a low birth weight. Clin Nutr 2012 ; 31 : 741–748. [CrossRef] [PubMed] [Google Scholar]
  20. Blat S, Morise A, Sauret A, et al. The protein level of isoenergetic formulae does not modulate postprandial insulin secretion in piglets and has no consequences on later glucose tolerance. Br J Nutr 2012 ; 108 : 102–112. [CrossRef] [PubMed] [Google Scholar]
  21. Boudry G, Jamin A, Chatelais L, et al. Dietary protein excess during neonatal life alters colonic microbiota and mucosal response to inflammatory mediators later in life in female pigs. J Nutr 2013 ; 143 : 1225–1232. [CrossRef] [PubMed] [Google Scholar]
  22. Chatelais L, Jamin A, Gras-Le Guen C, et al. The level of protein in milk formula modifies ileal sensitivity to LPS later in life in a piglet model. PLoS One 2011 ; 6 : e19594. [CrossRef] [PubMed] [Google Scholar]
  23. Hatch EE, Troisi R, Wise LA, et al. Preterm birth, fetal growth, and age at menarche among women exposed prenatally to diethylstilbestrol (DES). Reprod Toxicol 2011 ; 31 : 151–157. [CrossRef] [PubMed] [Google Scholar]
  24. Beshay VE, Carr BR, Rainey WE. The human fetal adrenal gland, corticotropin-releasing hormone, and parturition. Semin Reprod Med 2007 ; 25 : 14–20. [CrossRef] [PubMed] [Google Scholar]
  25. Moisan MP, Le Moal M. Le stress dans tous ses états. Med Sci (Paris) 2012 ; 28 : 612–617. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 2000 ; 97 : 11032–11037. [CrossRef] [Google Scholar]
  27. Appleton AA, Armstrong DA, Lesseur C, et al. Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLoS One 2013 ; 8 : e74691. [CrossRef] [PubMed] [Google Scholar]
  28. Rigourd V, Chelbi ST, Vaiman D. La pré-éclampsie. Med Sci (Paris) 2008 ; 24 : 1017–1019. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. Belfort MB, Rifas-Shiman SL, Sullivan T, et al. Infant growth before and after term: effects on neurodevelopment in preterm infants. Pediatrics 2011 ; 128 : e899–e906. [CrossRef] [PubMed] [Google Scholar]
  30. Kerkhof GF, Willemsen RH, Leunissen RW, et al. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol Metab 2012 ; 97 : 4498–4506. [CrossRef] [PubMed] [Google Scholar]
  31. Lin Y, Wei J, Li Y, et al. Developmental exposure to di(2-ethylhexyl)phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am J Physiol Endocrinol Metab 2011 ; 301 : E527–E538. [CrossRef] [PubMed] [Google Scholar]
  32. Burcelin R, Chabo C, Blasco-Baque V, et al. Le microbiote intestinal à l’origine de nouvelles perspectives thérapeutiques pour les maladies métaboliques ? Med Sci (Paris) 2013 ; 29 : 800–806. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Anderson SE, Whitaker RC. Attachment security and obesity in US preschool-aged children. Arch Pediatr Adolesc Med 2011 ; 165 : 235–242. [CrossRef] [PubMed] [Google Scholar]
  34. Baud O, Gressens P. Voie de signalisation Sonic Hedgehog et impact des glucocorticoïdes sur le cerveau en développement. Med Sci (Paris) 2009 ; 25 : 713–718. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Dessen AB, Haas HS, Koppe JG. Twenty-year follow-up of antenatal corticosteroid treatment. Pediatrics 2000 ; 105 : E77. [CrossRef] [PubMed] [Google Scholar]
  36. Brownfoot FC, Gagliardi DI, Bain E, et al. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2013; 8 : CD006764. [PubMed] [Google Scholar]
  37. Roze JC, Darmaun D, Boquien CY, et al. The apparent breastfeeding paradox in very preterm infants: relationship between breast feeding, early weight gain and neurodevelopment based on results from two cohorts. EPIPAGE and LIFT. BMJ Open 2012 ; 2 : e000834. [CrossRef] [PubMed] [Google Scholar]
  38. Singhal A, Cole TJ, Lucas A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 2001 ; 357 : 413–419. [CrossRef] [PubMed] [Google Scholar]
  39. Parsons TJ, Power C, Manor O. Infant feeding and obesity through the life-course. Arch Dis Child 2003 ; 88 : 793–794. [CrossRef] [PubMed] [Google Scholar]
  40. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 2001 ; 50 : 2279–2286. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.