Free Access
Issue |
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
|
|
---|---|---|
Page(s) | 617 - 621 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20153106014 | |
Published online | 07 July 2015 |
- Gould SR, Brash AR, Conolly ME. Increased prostaglandin production in ulcerative colitis. Lancet 1977 ; 2 : 98. [CrossRef] [Google Scholar]
- Murakami M, Naraba H, Tanioka T, et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000 ; 275 : 32783–32792. [CrossRef] [PubMed] [Google Scholar]
- Sharon P, Ligumsky M, Rachmilewitz D, Zor U. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology 1978 ; 75 : 638–640. [PubMed] [Google Scholar]
- Rodriguez-Lagunas MJ, Martin-Venegas R, Moreno JJ, Ferrer R. PGE2 promotes Ca2+-mediated epithelial barrier disruption through EP1 and EP4 receptors in Caco-2 cell monolayers. Am J Physiol Cell Physiol 2010 ; 299 : C324–C334. [CrossRef] [PubMed] [Google Scholar]
- Ajuebor MN, Singh A, Wallace JL. Cyclooxygenase-2-derived prostaglandin D(2) is an early anti-inflammatory signal in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2000 ; 279 : G238–G244. [PubMed] [Google Scholar]
- Vong L, Ferraz JG, Panaccione R, et al. A pro-resolution mediator, prostaglandin D(2), is specifically up-regulated in individuals in long-term remission from ulcerative colitis. Proc Natl Acad Sci USA 2010 ; 107 : 12023–12027. [CrossRef] [Google Scholar]
- Zamuner SR, Bak AW, Devchand PR, Wallace JL. Predisposition to colorectal cancer in rats with resolved colitis: role of cyclooxygenase-2-derived prostaglandin d2. Am J Pathol 2005 ; 167 : 1293–1300. [CrossRef] [PubMed] [Google Scholar]
- Hokari R, Kurihara C, Nagata N, et al. Increased expression of lipocalin-type-prostaglandin D synthase in ulcerative colitis and exacerbating role in murine colitis. Am J Physiol Gastrointest Liver Physiol 2011 ; 300 : G401–G408. [CrossRef] [PubMed] [Google Scholar]
- Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011 ; 111 : 5821–5865. [CrossRef] [PubMed] [Google Scholar]
- Malki S, Declosmenil F, Farhat A, et al. La prostaglandine D2 - Nouveaux rôles dans la gonade embryonnaire et pathologique. Med Sci (Paris) 2008 ; 24 : 177–183. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Urade Y, Fujimoto N, Hayaishi O. Purification and characterization of rat brain prostaglandin D synthetase. J Biol Chem 1985 ; 260 : 12410–12415. [PubMed] [Google Scholar]
- Kanaoka Y, Fujimori K, Kikuno R, et al. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur J Biochem 2000 ; 267 : 3315–3322. [CrossRef] [PubMed] [Google Scholar]
- Hokari R, Nagata N, Kurihara C, et al. Increased expression and cellular localization of lipocalin-type prostaglandin D synthase in Helicobacter pylori-induced gastritis. J Pathol 2009 ; 219 : 417–426. [CrossRef] [PubMed] [Google Scholar]
- Park JM, Kanaoka Y, Eguchi N, et al. Hematopoietic prostaglandin D synthase suppresses intestinal adenomas in ApcMin/+ mice. Cancer Res 2007 ; 67 : 881–889. [CrossRef] [PubMed] [Google Scholar]
- Bach-Ngohou K, Mahe MM, Aubert P, et al. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12, 14-prostaglandin J2. J Physiol 2010 ; 588 : 2533–2544. [CrossRef] [PubMed] [Google Scholar]
- Boie Y, Sawyer N, Slipetz DM, et al. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 1995 ; 270 : 18910–18916. [CrossRef] [PubMed] [Google Scholar]
- Hammad H, Kool M, Soullie T, et al. Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med 2007 ; 204 : 357–367. [CrossRef] [PubMed] [Google Scholar]
- Rajakariar R, Hilliard M, Lawrence T, et al. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyDelta12 14 PGJ2. Proc Natl Acad Sci USA 2007 ; 104 : 20979–20984. [CrossRef] [Google Scholar]
- Ishii M, Asano K, Namkoong H, et al. CRTH2 is a critical regulator of neutrophil migration and resistance to polymicrobial sepsis. J Immunol 2012 ; 188 : 5655–5664. [CrossRef] [PubMed] [Google Scholar]
- Satoh T, Moroi R, Aritake K, et al. Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol 2006 ; 177 : 2621–2629. [CrossRef] [PubMed] [Google Scholar]
- Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998 ; 391 : 79–82. [CrossRef] [PubMed] [Google Scholar]
- Zamuner SR, Warrier N, Buret AG, et al. Cyclooxygenase 2 mediates post-inflammatory colonic secretory and barrier dysfunction. Gut 2003 ; 52 : 1714–1720. [CrossRef] [PubMed] [Google Scholar]
- Sturm EM, Radnai B, Jandl K, et al. Opposing roles of prostaglandin D2 receptors in ulcerative colitis. J Immunol 2014 ; 193 : 827–839. [CrossRef] [PubMed] [Google Scholar]
- Hawcroft G, Gardner SH, Hull MA. Expression of prostaglandin D2 receptors DP1 and DP2 by human colorectal cancer cells. Cancer Lett 2004 ; 210 : 81–84. [CrossRef] [PubMed] [Google Scholar]
- Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998 ; 391 : 82–86. [CrossRef] [PubMed] [Google Scholar]
- Peyrin-Biroulet L, Beisner J, Wang G, et al. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci USA 2010 ; 107 : 8772–8777. [CrossRef] [Google Scholar]
- Castrillo A, Diaz-Guerra MJ, Hortelano S, et al. Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12, 14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol 2000 ; 20 : 1692–1698. [CrossRef] [PubMed] [Google Scholar]
- Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 2012 ; 15 : 57–62. [CrossRef] [PubMed] [Google Scholar]
- Dubuquoy L, Jansson EA, Deeb S, et al. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 2003 ; 124 : 1265–1276. [CrossRef] [PubMed] [Google Scholar]
- Choi YH, Lee SN, Aoyagi H, et al. The extracellular signal-regulated kinase mitogen-activated protein kinase/ribosomal S6 protein kinase 1 cascade phosphorylates cAMP response element-binding protein to induce MUC5B gene expression via D-prostanoid receptor signaling. J Biol Chem 2011 ; 286 : 34199–34214. [CrossRef] [PubMed] [Google Scholar]
- Wright DH, Ford-Hutchinson AW, Chadee K, Metters KM. The human prostanoid DP receptor stimulates mucin secretion in LS174T cells. Br J Pharmacol 2000 ; 131 : 1537–1545. [CrossRef] [PubMed] [Google Scholar]
- Velcich A, Yang W, Heyer J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002 ; 295 : 1726–1729. [CrossRef] [PubMed] [Google Scholar]
- Buisine MP, Desreumaux P, Leteurtre E, et al. Mucin gene expression in intestinal epithelial cells in Crohn’s disease. Gut 2001 ; 49 : 544–551. [CrossRef] [PubMed] [Google Scholar]
- Zouiten-Mekki L, Serghini M, Fekih M, et al. Rôle de la cellule épithéliale dans l’homéostasie intestinale et les maladies inflammatoires chroniques de l’intestin. Med Sci (Paris) 2013 ; 29 : 1145–1150. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Neunlist M, Van Landeghem L, Bourreille A, Savidge T. Neuro-glial crosstalk in inflammatory bowel disease. J Intern Med 2008 ; 263 : 577–583. [CrossRef] [PubMed] [Google Scholar]
- Savidge TC, Newman P, Pothoulakis C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 2007 ; 132 : 1344–1358. [CrossRef] [PubMed] [Google Scholar]
- Neunlist M, Van Landeghem L, Mahe MM, et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 2013 ; 10 : 90–100. [Google Scholar]
- Neunlist M, Toumi F, Oreschkova T, et al. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol 2003 ; 285 : G1028–G1036. [CrossRef] [PubMed] [Google Scholar]
- Neunlist M, Aubert P, Bonnaud S, et al. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 2007 ; 292 : G231–G241. [CrossRef] [PubMed] [Google Scholar]
- Villanacci V, Bassotti G, Nascimbeni R, et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil 2008 ; 20 : 1009–1016. [CrossRef] [PubMed] [Google Scholar]
- Barajon I, Serrao G, Arnaboldi F, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 2009 ; 57 : 1013–1023. [CrossRef] [PubMed] [Google Scholar]
- Ruhl A. Glial cells in the gut. Neurogastroenterol Motil 2005 ; 17 : 777–790. [CrossRef] [PubMed] [Google Scholar]
- Mosnier JF, Jarry A, Camdessanche JP, Antoine JC, Laboisse CL. In situ evidence of involvement of Schwann cells in ulcerative colitis: autocrine and paracrine signaling by A disintegrin and metalloprotease-17-mediated tumor necrosis factor alpha production. Hum Pathol 2009 ; 40 : 1159–1167. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.