Free Access
Issue
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 937 - 940
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20143011002
Published online 10 November 2014
  1. McKnight SL, Miller OL, Jr. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 1977 ; 12 : 795–804. [CrossRef] [PubMed] [Google Scholar]
  2. Sogo JM, Stahl H, Koller T, Knippers R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 1986 ; 189 : 189–204. [CrossRef] [PubMed] [Google Scholar]
  3. DePamphilis ML, Wassarman PM. Replication of eukaryotic chromosomes: a close-up of the replication fork. Annu Rev Biochem 1980 ; 49 : 627–666. [CrossRef] [PubMed] [Google Scholar]
  4. Taddei A, Roche D, Sibarita JB, et al. Duplication and maintenance of heterochromatin domains. J Cell Biol 1999 ; 147 : 1153–1166. [CrossRef] [PubMed] [Google Scholar]
  5. Sobel RE, Cook RG, Perry CA, et al. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 1995 ; 92 : 1237–1241. [CrossRef] [Google Scholar]
  6. Seale RL. Assembly of DNA and protein during replication in HeLa cells. Nature 1975 ; 255 : 247–249. [CrossRef] [PubMed] [Google Scholar]
  7. Alabert C, Groth A. Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 2012 ; 13 : 153–167. [Google Scholar]
  8. Margueron R, Justin N, Ohno K, et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009 ; 461 : 762–767. [CrossRef] [PubMed] [Google Scholar]
  9. Scharf AN, Barth TK, Imhof A. Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 2009 ; 37 : 5032–5040. [CrossRef] [PubMed] [Google Scholar]
  10. Sirbu BM, Couch FB, Feigerle JT, et al. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 2011 ; 25 : 1320–1327. [CrossRef] [PubMed] [Google Scholar]
  11. Kliszczak AE, Rainey MD, Harhen B, NA D, et al. mediated chromatin pull-down for the study of chromatin replication. Sci Rep 2011 ; 1 : 95. [CrossRef] [PubMed] [Google Scholar]
  12. Alabert C, Bukowski-Wills JC, Lee SB, et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol 2014 ; 16 : 281–293. [CrossRef] [PubMed] [Google Scholar]
  13. Gilbert DM. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat Rev Genet 2010 ; 11 : 673–684. [CrossRef] [PubMed] [Google Scholar]
  14. Kustatscher G, Hégarat N, Wills KL, et al. Proteomics of a fuzzy organelle: interphase chromatin. EMBO J 2014 ; 33 : 648–664. [CrossRef] [PubMed] [Google Scholar]
  15. Unger, S, Górna MW, Le Béchec A, et al. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet 2013 ; 92 : 990–995. [CrossRef] [PubMed] [Google Scholar]
  16. Bertin A, Mangenot S. Structure et dynamique de la particule cœur de nucléosome. Med Sci (Paris) 2008 ; 24 : 715–719. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Emadali A, Gallagher-Gambarelli M. La protéomique quantitative par la méthode SILAC. Med Sci (Paris) 2009 ; 25 : 835–842. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.