Free Access
Issue
Med Sci (Paris)
Volume 30, Number 10, Octobre 2014
Page(s) 855 - 863
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143010012
Published online 14 October 2014
  1. Deligne C, Teillaud JL. Le double visage des anticorps monoclonaux en oncologie. Immunité passive et vaccination. Med Sci (Paris) 2013 ; 29 : 57–63. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Watier H. De la sérothérapie aux anticorps recombinants « nus » : plus d’un siècle de succès en thérapie ciblée. Med Sci (Paris) 2009 ; 25 : 999–1009. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Amar S, Moreno-Aspitia A, Perez EA. Issues and controversies in the treatment of HER2 positive metastatic breast cancer. Breast Cancer Res Treat 2008 ; 109 : 1–7. [CrossRef] [PubMed] [Google Scholar]
  4. Garrett CR, Eng C. Cetuximab in the treatment of patients with colorectal cancer. Expert Opin Biol Ther 2011 ; 11 : 937–949. [CrossRef] [PubMed] [Google Scholar]
  5. Hertler AA, Frankel AE. Immunotoxins: a clinical review of their use in the treatment of malignancies. J Clin Oncol 1989 ; 7 : 1932–1942. [PubMed] [Google Scholar]
  6. Barbet J, Chatal JF, Kraeber-Bodéré F. Les anticorps radiomarqués pour le traitement des cancers. Med Sci (Paris) 2009 ; 25 : 1039–1045. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Mathé G, Loc TB, Bernard J. Effet sur la leucémie 1210 de la souris d’une combinaison par diazotation d’A-méthoptérine et de gamma-globulines de hamsters porteurs de cette leucémie par hétérogreffe. CR Acad Sci Paris 1958 ; 246 : 1626–1628. [Google Scholar]
  8. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin into induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol 2012 ; 30 : 3924–3931. [CrossRef] [PubMed] [Google Scholar]
  9. Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012 ; 379 : 1508–1516. [CrossRef] [PubMed] [Google Scholar]
  10. Przepiorka D, Deisseroth A, Kane R, et al. Gemtuzumab ozogamicin. J Clin Oncol 2013 ; 31 : 1699–1701. [CrossRef] [PubMed] [Google Scholar]
  11. Haute autorité de santé. Commission de la transparence. Avis du 6 mars 2013 sur ADCETRIS 50 mg, poudre pour solution à diluer pour perfusion. Displonible à http://www.has-sante.fr/portail/jcms/c_1517924/fr/adcetris [Google Scholar]
  12. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 2012 ; 30 : 2183–2189. [CrossRef] [PubMed] [Google Scholar]
  13. Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 2012 ; 30 : 2190–2196. [CrossRef] [PubMed] [Google Scholar]
  14. Forero-Torres A, Leonard JP, Younes A, et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol 2009 ; 146 : 171–179. [CrossRef] [PubMed] [Google Scholar]
  15. Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1994 ; 1198 : 165–184. [PubMed] [Google Scholar]
  16. Junttila TT, Li G, Parsons K, et al. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat 2011 ; 128 : 347–356. [CrossRef] [PubMed] [Google Scholar]
  17. Barok M, Tanner M, Köninki K, et al. Trastuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res 2011 ; 13 : R46. [CrossRef] [PubMed] [Google Scholar]
  18. Verma S, Miles D, Gianni L, et al. EMILIA study group trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012 ; 367 : 1783–1791. [CrossRef] [PubMed] [Google Scholar]
  19. Sassoon I, Blanc V. Antibody-drug conjugate (ADC) clinical pipeline: a review. Methods Mol Biol 2013 ; 1045 : 1–27. [CrossRef] [PubMed] [Google Scholar]
  20. Mathur R, Weiner GJ. Picking the optimal target for antibody-drug conjugates. Am Soc Clin Oncol Educ Book 2013 ; 2013 : 103–107. [CrossRef] [Google Scholar]
  21. Teicher BA. Antibody-drug conjugate targets. Curr Cancer Drug Targets 2009 ; 9 : 982–1004. [CrossRef] [PubMed] [Google Scholar]
  22. Haeuw JF, Caussanel V, Beck A. Les immunoconjugués, anticorps « armés » pour combattre le cancer. Med Sci (Paris) 2009 ; 25 : 1046–1052. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Jeffrey SC, Burke PJ, Lyon RP, et al. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 2013 ; 24 : 1256–1263. [CrossRef] [PubMed] [Google Scholar]
  24. Kung Sutherland MS, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 2013 ; 122 : 1455–1463. [CrossRef] [PubMed] [Google Scholar]
  25. Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 2009 ; 13 : 235–244. [CrossRef] [PubMed] [Google Scholar]
  26. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 2010 ; 21 : 5–13. [CrossRef] [PubMed] [Google Scholar]
  27. Erickson HK, Park PU, Widdison WC, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 2006 ; 66 : 4426–4433. [CrossRef] [PubMed] [Google Scholar]
  28. Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003 ; 21 : 778–784. [CrossRef] [PubMed] [Google Scholar]
  29. Panowski S, Bhakta S, Raab H, et al. Site-specific antibody drug conjugates for cancer therapy. mAbs 2014 ; 6 : 34–45. [Google Scholar]
  30. Behrens CR, Liu B. Methods for site-specific drug conjugation to antibodies. MAbs 2014 ; 6 : 46–53. [CrossRef] [PubMed] [Google Scholar]
  31. Klinguer-Hamour C, Strop P, Shah DK, et al. World antibody-drug conjugate summit, October 15–16, 2013, San Francisco, CA. MAbs 2014 ; 6 : 18–29. [CrossRef] [PubMed] [Google Scholar]
  32. Moldenhauer G, Salnikov AV, Lüttgau S, et al. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst 2012 ; 104 : 622–634. [CrossRef] [PubMed] [Google Scholar]
  33. Zhao RY, Wilhelm SD, Audette C, et al. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J Med Chem 2011 ; 54 : 3606–3623. [CrossRef] [PubMed] [Google Scholar]
  34. Polu KR, Lowman HB. Probody™ therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 2014 ; 20 : 1–5. [Google Scholar]
  35. Simon M, Frey R, Zangemeister-Wittke U, Plückthun A. Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjug Chem 2013 ; 24 : 1955–1966. [CrossRef] [PubMed] [Google Scholar]
  36. Da Silva PPJ, Bendjeddou LZ, Meijer L. Recherche de substances naturelles à activité thérapeutique (2) : George R. Pettit. Med Sci (Paris) 2014 ; 30 : 319–328. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.