Free Access
Med Sci (Paris)
Volume 30, Number 8-9, Août–Septembre 2014
Page(s) 758 - 764
Section M/S Revues
Published online 01 September 2014
  1. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010 ; 40 : 179–204. [Google Scholar]
  2. Price BD, D’Andrea AD. Cell chromatin remodeling at DNA double-strand breaks. Cell 2013 ; 14 : 1344–1354. [CrossRef] [Google Scholar]
  3. Touati E. When bacteria become mutagenic and carcinogenic: lessons from H. pylori. Mutat Res 2010 ; 703 : 66–70. [CrossRef] [PubMed] [Google Scholar]
  4. Kim JJ, Tao H, Carloni E, et al. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 2002 ; 123 : 542–553. [CrossRef] [PubMed] [Google Scholar]
  5. Machado AM, Figueiredo C, Touati E, et al. Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells. Clin Cancer Res 2009 ; 15 : 2995–3002. [CrossRef] [PubMed] [Google Scholar]
  6. Machado AM, Figueiredo C, Seruca R, Rasmussen LJ. Helicobacter pylori infection generates genetic instability in gastric cells. Biochem Biophys Acta 2010 ; 1806 : 58–65. [Google Scholar]
  7. Touati E, Michel V, Thiberge JM, et al. Chronic Helicobacter pylori infections induce gastric mutations in mice. Gastroenterology 2003 ; 124 : 1408–1419. [CrossRef] [PubMed] [Google Scholar]
  8. Umeda M, Murata-Kamiya N, Saito Y, et al. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem 2009 ; 284 : 22166–22172. [CrossRef] [PubMed] [Google Scholar]
  9. Wei J, Nagy TA, Vilgelm A, et al. Regulation of p53 tumor suppressor by Helicobacter pylori in gastric epithelial cells. Gastroenterology 2010 ; 139 : 1333–1343. [CrossRef] [PubMed] [Google Scholar]
  10. Buti L, Spooner E, Van der Veen AG, et al. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA 2011 ; 108 : 9238–9243. [CrossRef] [Google Scholar]
  11. Toller IM, Neelsen KJ, Steger M, et al. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA 2011 ; 108 : 14944–14949. [CrossRef] [Google Scholar]
  12. El Kaoutari A, Armougom F, Raoult D, Henrissat B. Le microbiote intestinal et la digestion des polysaccharides. Med Sci (Paris) 2014 ; 30 : 259–265. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Nougayrède JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006 ; 313 : 848–851. [CrossRef] [PubMed] [Google Scholar]
  14. Cuevas-Ramos G, Petit CR, Marcq I, et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 2010 ; 107 : 11537–11542. [CrossRef] [Google Scholar]
  15. Secher T, Samba-Louaka A, Oswald E, Nougayrède JP. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS One 2013 ; 8 : e77157. [CrossRef] [PubMed] [Google Scholar]
  16. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012 ; 338 : 120–123. [CrossRef] [PubMed] [Google Scholar]
  17. Olier M, Marcq I, Salvador-Cartier C, et al. Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity. Gut Microbes 2013 ; 3 : 501–509. [CrossRef] [Google Scholar]
  18. Putze J, Hennequin C, Nougayrède JP, et al. Genetic structure of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 2009 ; 77 : 4696–4703. [CrossRef] [PubMed] [Google Scholar]
  19. Lai YC, Lin AC, Chiang MK, et al. Genotoxic Klebsiella pneumoniae in Taiwan. PLoS One 2014 ; 9 : e96292. [CrossRef] [PubMed] [Google Scholar]
  20. Comayras C, Tasca C, Pérès SY, et al. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M. transition by preventing cdc2 protein kinase dephosphorylation and activation. Infect Immun 1997 ; 65 : 5088–5095. [PubMed] [Google Scholar]
  21. Lara-Tejero M, Galán JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 2000 ; 290 : 354–357. [CrossRef] [PubMed] [Google Scholar]
  22. Li L, Sharipo A, Chaves-Olarte E, et al. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell Microbiol 2002 ; 4 : 87–99. [CrossRef] [PubMed] [Google Scholar]
  23. Frisan T, Cortes-Bratti X, Chaves-Olarte E, et al. The Haemophilus ducreyi cytolethal distending toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA. Cell Microbiol 2003 ; 5 : 695–707. [CrossRef] [PubMed] [Google Scholar]
  24. Guerra L, Cortes-Bratti X, Guidi R, Frisan T. The biology of the cytolethal distending toxins. Toxins (Basel) 2011 ; 3 : 172–190. [CrossRef] [PubMed] [Google Scholar]
  25. Blazkova H, Krejcikova K, Moudry P, et al. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling. J Cell Mol Med 2010 ; 14 : 357–367. [CrossRef] [PubMed] [Google Scholar]
  26. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009 ; 7 : 654–665. [CrossRef] [PubMed] [Google Scholar]
  27. Elsen S, Collin-Faure V, Gidrol X, Lemercier C. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells. Cell Mol Life Sci 2013 ; 70 : 4385–4397. [CrossRef] [PubMed] [Google Scholar]
  28. Wu M, Huang H, Zhang W, et al. Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice. Infect Immun 2011 ; 79 : 75–87. [CrossRef] [PubMed] [Google Scholar]
  29. Bergounioux J, Elisee R, Prunier AL, et al. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe 2012 ; 11 : 240–252. [CrossRef] [PubMed] [Google Scholar]
  30. Bergounioux J, Arbibe L. Les calpaïnes, un rôle décisif dans la vie et la mort de la niche épithéliale infectée par l’entéropathogène Shigella flexneri. Med Sci (Paris) 2012 ; 28 : 1029–1071. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Leitão E, Costa AC, Brito C, et al. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection. Cell Cycle 2014 ; 13 : 928–940. [CrossRef] [PubMed] [Google Scholar]
  32. Lam GY, Fattouh R, Muise AM, et al. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxydase to promote Listeria monocytogenes infection. Cell Host Microbe 2011 ; 10 : 627–634. [CrossRef] [PubMed] [Google Scholar]
  33. Eskandarian HA, Impens F, Nahori MA, et al. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 2013 ; 341 : 1238858. [CrossRef] [PubMed] [Google Scholar]
  34. Vielfort K, Söderholm N, Weyler L, et al. Neisseria gonorrhoeae infection causes DNA damage and affects the expression of p21, p27 and p53 in non-tumor epithelial cells. J Cell Sci 2013 ; 126 : 339–347. [CrossRef] [PubMed] [Google Scholar]
  35. Bischof O, Dejean A, Pineau P. Une re-vue de la sénescence. Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Lemercier C, Elsen S.. Pseudomonas aeruginosa prise en flagrant délit de casse ! Med Sci (Paris) 2013 ; 29 : 949–950. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Kaplan-Türköz B, Terradot L. Structure et mode d’injection de l’oncoprotéine CagA d’Helicobacter pylori. Med Sci (Paris) 2013 ; 29 : 33–36. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.