Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 3, Mars 2014
|
|
---|---|---|
Page(s) | 280 - 288 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20143003016 | |
Published online | 31 March 2014 |
- Mjösberg J, Bernink J, Peters C, Spits H. Transcriptional control of innate lymphoid cells. Eur J Immunol 2012 ; 42 : 1916–1923. [CrossRef] [PubMed] [Google Scholar]
- Spits H, Artis D, Colonna M, et al. Innate lymphoid cells [mdash] a proposal for uniform nomenclature. Nat Rev Immunol 2013 ; 13 : 145–149. [CrossRef] [PubMed] [Google Scholar]
- Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010 ; 464 : 1367–1370. [CrossRef] [PubMed] [Google Scholar]
- Hoyler T, Klose Christoph SN, Souabni A, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012 ; 37 : 634–648. [CrossRef] [PubMed] [Google Scholar]
- Mjösberg J, Bernink J, Golebski K, et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 2012 ; 37 : 649–659. [CrossRef] [PubMed] [Google Scholar]
- Sawa S, Cherrier M, Lochner M, et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010 ; 330 : 665–669. [CrossRef] [PubMed] [Google Scholar]
- Rouzaire P, Mayol K, Viel S, et al. Homéostasie des cellules natural killer. Med Sci (Paris) 2012 ; 28 : 403–408. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Colonna M, Jonjic S, Watzl C. Natural killer cells: fighting viruses and much more. Nat Immunol 2011 ; 12 : 107–110. [CrossRef] [PubMed] [Google Scholar]
- Narni-Mancinelli E, Ugolini S, Vivier E. Les cellules natural killer. Med Sci (Paris) 2013 ; 29 : 389–395. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 1989 ; 320 : 1731–1735. [CrossRef] [PubMed] [Google Scholar]
- Etzioni A, Eidenschenk C, Katz R, et al. Fatal varicella associated with selective natural killer cell deficiency. J Pediatr 2005 ; 146 : 423–425. [CrossRef] [PubMed] [Google Scholar]
- Björkström NK, Kekäläinen E, Mjösberg J. Tissue-specific effector functions of innate lymphoid cells. Immunology 2013 ; 139 : 416–427. [CrossRef] [PubMed] [Google Scholar]
- Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 2013 ; 14 : 221–229. [CrossRef] [PubMed] [Google Scholar]
- Moro K, Yamada T, Tanabe M, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 2009 ; 463 : 540–544. [Google Scholar]
- Monticelli LA, Sonnenberg GF, Artis D. Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Curr Opin Immunol 2012 ; 24 : 284–289. [CrossRef] [PubMed] [Google Scholar]
- Wong SH, Walker JA, Jolin HE, et al. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 2012 ; 13 : 229–236. [CrossRef] [PubMed] [Google Scholar]
- Mjosberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011 ; 12 : 1055–1062. [CrossRef] [PubMed] [Google Scholar]
- Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med 2011 ; 365 : 1088–1098. [CrossRef] [PubMed] [Google Scholar]
- Barnig C, Cernadas M, Dutile S, et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med 2013 ; 5 : 174ra26. [CrossRef] [PubMed] [Google Scholar]
- Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997 ; 7 : 493–504. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Eberl G, Marmon S, Sunshine MJ, et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004 ; 5 : 64–73. [CrossRef] [PubMed] [Google Scholar]
- Yoshida H, Honda K, Shinkura R, et al. IL-7 receptor alpha+ CD3- cells in the embryonic intestine induces the organizing center of Peyer’s patches. Int Immunol 1999 ; 11 : 643–655. [CrossRef] [PubMed] [Google Scholar]
- Honda K, Nakano H, Yoshida H, et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med 2001 ; 193 : 621–630. [CrossRef] [PubMed] [Google Scholar]
- Cupedo T, Crellin NK, Papazian N, et al. Human fetal lymphoid tissue–inducer cells are interleukin 17–producing precursors to RORC+ CD127+ natural killer–like cells. Nat Immunol 2008 ; 10 : 66–74. [CrossRef] [PubMed] [Google Scholar]
- Kanamori Y, Ishimaru K, Nanno M, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 1996 ; 184 : 1449–1459. [CrossRef] [PubMed] [Google Scholar]
- Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008 ; 456 : 507–510. [CrossRef] [PubMed] [Google Scholar]
- Tsuji M, Suzuki K, Kitamura H, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 2008 ; 29 : 261–271. [CrossRef] [PubMed] [Google Scholar]
- Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013 ; 498 : 113–117. [CrossRef] [PubMed] [Google Scholar]
- Sawa S, Lochner M, Satoh-Takayama N, et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 2011 ; 12 : 320–326. [CrossRef] [PubMed] [Google Scholar]
- Sonnenberg GF, Monticelli LA, Elloso MM, et al. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011 ; 34 : 122–134. [CrossRef] [PubMed] [Google Scholar]
- Luci C, Reynders A, Ivanov II, et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat Immunol 2008 ; 10 : 75–82. [CrossRef] [PubMed] [Google Scholar]
- Sanos SL, Vonarbourg C, Mortha A, Diefenbach A. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells. Immunology 2011 ; 132 : 453–465. [CrossRef] [PubMed] [Google Scholar]
- Sonnenberg GF, Monticelli LA, Alenghat T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012 ; 336 : 1321–1325. [CrossRef] [PubMed] [Google Scholar]
- Crellin NK, Trifari S, Kaplan CD, et al. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 2010 ; 33 : 752–764. [CrossRef] [PubMed] [Google Scholar]
- Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009 ; 457 : 722–725. [CrossRef] [PubMed] [Google Scholar]
- Glatzer T, Killig M, Meisig J, et al. RORγt+ Innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity 2013 ; 38 : 1223–1235. [CrossRef] [PubMed] [Google Scholar]
- Geremia A, Arancibia-Cárcamo CV, Fleming MPP, et al. IL-23–responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011 ; 208 : 1127–1133. [CrossRef] [PubMed] [Google Scholar]
- Buonocore S, Ahern PP, Uhlig HH, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010 ; 464 : 1371–1375. [CrossRef] [PubMed] [Google Scholar]
- Powell N, Walker Alan W, Stolarczyk E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012 ; 37 : 674–684. [CrossRef] [PubMed] [Google Scholar]
- Coccia M, Harrison OJ, Schiering C, et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J Exp Med 2012 ; 209 : 1595–1609. [CrossRef] [PubMed] [Google Scholar]
- Rankin LC, Groom JR, Chopin M, et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol 2013 ; 14 : 389–395. [CrossRef] [PubMed] [Google Scholar]
- Klose CSN, Kiss EA, Schwierzeck V, et al. A T-bet gradient controls the fate and function of CCR6-ROR[ggr]t+ innate lymphoid cells. Nature 2013 ; 494 : 261–265. [CrossRef] [PubMed] [Google Scholar]
- Sun Z, Unutmaz D, Zou YR, et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 2000 ; 288 : 2369–2373. [CrossRef] [PubMed] [Google Scholar]
- Cherrier M, Sawa S, Eberl G. Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med 2012 ; 209 : 729–740. [CrossRef] [PubMed] [Google Scholar]
- Kiss EA, Vonarbourg C, Kopfmann S, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011 ; 334 : 1561–1565. [CrossRef] [PubMed] [Google Scholar]
- Lee JS, Cella M, McDonald KG, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011 ; 13 : 144–151. [CrossRef] [PubMed] [Google Scholar]
- Ohnmacht C, Marques R, Presley L, et al. Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity. Cell Microbiol 2011 ; 13 : 653–659. [CrossRef] [PubMed] [Google Scholar]
- Sanos SL, Bui VL, Mortha A, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009 ; 10 : 83–91. [CrossRef] [PubMed] [Google Scholar]
- Vonarbourg C, Mortha A, Bui VL, et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 2010 ; 33 : 736–751. [CrossRef] [PubMed] [Google Scholar]
- Ganal Stephanie C, Sanos Stephanie L, Kallfass C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012 ; 37 : 171–186. [CrossRef] [PubMed] [Google Scholar]
- Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011 ; 12 : 1045–1054. [CrossRef] [PubMed] [Google Scholar]
- Vonarbourg C. Le récepteur d’aryl d’hydrocarbone, lien moléculaire entre alimentation et immunité. Med Sci (Paris) 2012 ; 28 : 255–258. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- El Kaoutari A, Armougom F, Raoult D, Henrissat B. Le microbiote intestinal et la digestion des polysaccharides. Med Sci (Paris) 2014 ; 30 : 259-–265 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Korneychuk N. Les cellules lymphoïdes innées contrôlent la réponse adaptative aux bactéries commensales intestinales. Med Sci (Paris) 2014 ; 30 : 253–257. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.