Free Access
Issue
Med Sci (Paris)
Volume 29, Number 6-7, Juin–Juillet 2013
Page(s) 617 - 622
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013296014
Published online 12 July 2013
  1. Lacampagne A, Fauconnier J, Richard S. Récepteur de la ryanodine et dysfonctionnement myocardique. Med Sci (Paris) 2008 ; 24 : 399–405. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Bers DM. Cardiac excitation-contraction coupling. Nature 2002 ; 415 : 198–205. [CrossRef] [PubMed] [Google Scholar]
  3. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev 2008 ; 88 : 919–982. [CrossRef] [PubMed] [Google Scholar]
  4. Lerebours G. Le rythme sinusal : mécanisme et fonction. Med Sci (Paris) 2007 ; 23 : 657–662. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Morel E, Marcantoni A, Gastineau M, et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 2005 ; 97 : 1296–1304. [CrossRef] [PubMed] [Google Scholar]
  6. Metrich M, Lucas A, Gastineau M, et al.Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 2008 ; 102 : 959–965. [CrossRef] [PubMed] [Google Scholar]
  7. Pereira L, Metrich M, Fernandez-Velasco M, et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007 ; 583 : 685–694. [CrossRef] [PubMed] [Google Scholar]
  8. Cazorla O, Lucas A, Poirier F, et al. The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci USA 2009 ; 106 : 14144–14149. [CrossRef] [Google Scholar]
  9. Steinberg SF, Brunton LL. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 2001 ; 41 : 751–773. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. Gao T, Puri TS, Gerhardstein BL, et al. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 1997 ; 272 : 19401–19407. [CrossRef] [PubMed] [Google Scholar]
  11. Nikolaev VO, Moshkov A, Lyon AR, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 2010 ; 327 : 1653–1657. [CrossRef] [PubMed] [Google Scholar]
  12. Scott JD, Santana LF. A-kinase anchoring proteins: getting to the heart of the matter. Circulation 2010 ; 121 : 1264–1271. [CrossRef] [PubMed] [Google Scholar]
  13. Fischmeister R, Castro LR, Abi-Gerges A, et al. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 2006 ; 99 : 816–828. [CrossRef] [PubMed] [Google Scholar]
  14. Patrucco E, Albergine MS, Santana LF, Beavo JA. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol 2010 ; 49 : 330–333. [CrossRef] [PubMed] [Google Scholar]
  15. Mika D, Leroy J, Vandecasteele G, Fischmeister R. PDEs create local domains of cAMP signaling. J Mol Cell Cardiol 2012 ; 52 : 323–329. [CrossRef] [PubMed] [Google Scholar]
  16. Osadchii OE. Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther 2007 ; 21 : 171–194. [CrossRef] [PubMed] [Google Scholar]
  17. Patrucco E, Notte A, Barberis L, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 2004 ; 118 : 375–387. [CrossRef] [PubMed] [Google Scholar]
  18. Shakur Y, Holst LS, Landstrom TR, et al. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog Nucleic Acid Res Mol Biol 2001 ; 66 : 241–277. [CrossRef] [PubMed] [Google Scholar]
  19. Weishaar RE, Kobylarz-Singer DC, Steffen RP, Kaplan HR. Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res 1987 ; 61 : 539–547. [CrossRef] [PubMed] [Google Scholar]
  20. Lugnier C, Muller B, Le Bec A, et al. Characterization of indolidan- and rolipram-sensitive cyclic nucleotide phosphodiesterases in canine and human cardiac microsomal fractions. J Pharmacol Exp Ther 1993 ; 265 : 1142–1151. [PubMed] [Google Scholar]
  21. Verde I, Vandecasteele G, Lezoualc’h F, Fischmeister R. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br J Pharmacol 1999 ; 127 : 65–74. [CrossRef] [PubMed] [Google Scholar]
  22. Kerfant BG, Zhao D, Lorenzen-Schmidt I, et al. PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res 2007 ; 101 : 400–408. [CrossRef] [PubMed] [Google Scholar]
  23. Beca S, Ahmad F, Shen W, et al. PDE3A regulates basal myocardial contractility through interacting with SERCA2a-signaling complexes in mouse heart. Circ Res 2013 ; 112 : 289–297. [CrossRef] [PubMed] [Google Scholar]
  24. Sun B, Li H, Shakur Y, et al. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal 2007 ; 19 : 1765–1771. [CrossRef] [PubMed] [Google Scholar]
  25. Kostic MM, Erdogan S, Rena G, et al. Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. J Mol Cell Cardiol 1997 ; 29 : 3135–3146. [CrossRef] [PubMed] [Google Scholar]
  26. Mokni W, Keravis T, Etienne-Selloum N, et al. Concerted regulation of cGMP, cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 2010 ; 5 : e14227. [CrossRef] [PubMed] [Google Scholar]
  27. Muller B, Lugnier C, Stoclet JC. Involvement of rolipram-sensitive cyclic AMP phosphodiesterase in the regulation of cardiac contraction. J Cardiovasc Pharmacol 1990 ; 16 : 796–803. [CrossRef] [PubMed] [Google Scholar]
  28. Leroy J, Abi-Gerges A, Nikolaev VO, et al. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res 2008 ; 102 : 1091–1100. [CrossRef] [PubMed] [Google Scholar]
  29. Leroy J, Richter W, Mika D, et al. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. J Clin Invest 2011 ; 121 : 2651–2661. [CrossRef] [PubMed] [Google Scholar]
  30. Beca S, Helli PB, Simpson JA, et al. Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ Res 2011 ; 109 : 1024–1030. [CrossRef] [PubMed] [Google Scholar]
  31. Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 2005 ; 123 : 25–35. [CrossRef] [PubMed] [Google Scholar]
  32. Molina CE, Leroy J, Richter W, et al. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 2012 ; 59 : 2182–2190. [CrossRef] [PubMed] [Google Scholar]
  33. Amsallem E, Kasparian C, Haddour G, et al. Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst Rev 2005 ; CD002230. [Google Scholar]
  34. Yan C, Miller CL, Abe J. Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ Res 2007 ; 100 : 489–501. [CrossRef] [PubMed] [Google Scholar]
  35. Perino A, Ghigo A, Ferrero E, et al. Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma. Mol Cell 2011 ; 42 : 84–95. [CrossRef] [PubMed] [Google Scholar]
  36. Ghigo A, Perino A, Mehel H, et al. PI3Kgamma protects against catecholamine-induced ventricular arrhythmia through PKA-mediated regulation of distinct phosphodiesterases. Circulation 2012 ; 126 : 2073–2083. [CrossRef] [PubMed] [Google Scholar]
  37. Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure?. Circ Res 2003 ; 93 : 896–906. [CrossRef] [PubMed] [Google Scholar]
  38. Abi-Gerges A, Richter W, Lefebvre F, et al. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res 2009 ; 105 : 784–792. [CrossRef] [PubMed] [Google Scholar]
  39. Berthouze-Duquesnes M, Lucas A, Sauliere A, et al. Specific interactions between Epac1, beta-arrestin2 and PDE4D5 regulate beta-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal 2013 ; 25 : 970–980. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.