Free Access
Issue
Med Sci (Paris)
Volume 28, Number 12, Décembre 2012
Page(s) 1133 - 1137
Section Prix Nobel 2012
DOI https://doi.org/10.1051/medsci/20122812026
Published online 21 December 2012
  1. Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007 ; 450 : 383–387. [CrossRef] [PubMed] [Google Scholar]
  2. Audet M, Bouvier M. Restructuring G-protein-coupled receptor activation. Cell 2012 ; 151 : 14–23. [CrossRef] [PubMed] [Google Scholar]
  3. Rasmussen SG, DeVree BT, Zou Y, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 2011 ; 477 : 549–555. [CrossRef] [PubMed] [Google Scholar]
  4. Granier S, Kobilka B. A new era of GPCR structural and chemical biology. Nat Chem Biol 2012 ; 8 : 670–673. [CrossRef] [PubMed] [Google Scholar]
  5. Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 1999 ; 18 : 1723–1729. [CrossRef] [PubMed] [Google Scholar]
  6. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002 ; 42 : 409–435. [CrossRef] [PubMed] [Google Scholar]
  7. Vassart G, Costagliola S. G protein-coupled receptors: mutations and endocrine diseases. Nat Rev Endocrinol 2011 ; 7 : 362–372. [CrossRef] [PubMed] [Google Scholar]
  8. Sladeczek F, Pin JP, Recasens M, et al. Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 1985 ; 317 : 717–719. [CrossRef] [PubMed] [Google Scholar]
  9. Bockaert J, Claeysen S, Becamel C, et al. G protein-coupled receptors: dominant players in cell-cell communication. Int Rev Cytol 2002 ; 212 : 63–132. [CrossRef] [PubMed] [Google Scholar]
  10. Kniazeff J, Prezeau L, Rondard P, et al. Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol Ther 2011 ; 130 : 9–25. [CrossRef] [PubMed] [Google Scholar]
  11. Ahlquist RP. Adrenergic receptors: a personal and practical view. Perspect Biol Med 1973 ; 17 : 119–122. [PubMed] [Google Scholar]
  12. Bockaert J, Roy C, Rajerison R, Jard S. Specific binding of (3H) lysine-vasopressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation. J Biol Chem 1973 ; 248 : 5922–5931. [PubMed] [Google Scholar]
  13. De Lean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 1980 ; 255 : 7108–7117. [PubMed] [Google Scholar]
  14. Kuhn H, Wilden U. Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin. J Recept Res 1987 ; 7 : 283–298. [PubMed] [Google Scholar]
  15. Lefkowitz RJ. Seven transmembrane receptors: a brief personal retrospective. Biochim Biophys Acta 2007 ; 1768 : 748–755. [CrossRef] [PubMed] [Google Scholar]
  16. Azzi M, Charest PG, Angers S, et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA 2003 ; 100 : 11406–11411. [CrossRef] [Google Scholar]
  17. Dixon RA, Kobilka BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 1986 ; 321 : 75–79. [CrossRef] [PubMed] [Google Scholar]
  18. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000 ; 289 : 739–745. [CrossRef] [PubMed] [Google Scholar]
  19. Bockaert J, Perroy J, Becamel C, et al. GPCR interacting proteins (GIPs) in the nervous system: Roles in physiology and pathologies. Annu Rev Pharmacol Toxicol 2010 ; 50 : 89–109. [CrossRef] [PubMed] [Google Scholar]
  20. Bril A, Combettes M, Audinot V. Récepteurs couplés aux protéines G - Le début d’une nouvelle ère pour l’innovation thérapeutique. Med Sci (Paris) 2012 ; 28 : 799–800. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Bouvier M. Métaphores, nomenclature et nouveaux paradigmes de signalisation par les récepteurs couplés aux protéines G. Med Sci (Paris) 2012 ; 28 : 801–803. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Banères JL, Mouillac B. Manipulation des RCPG : expression, purification et stabilization in vitro. Med Sci (Paris) 2012 ; 28 : 837–844. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Sebag JA, Pantel J. Ciblage thérapeutique des récepteurs couplés aux protéines G : la voie allostérique. Med Sci (Paris) 2012 ; 28 : 845–851. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Galzi JL, Ilien B. Les récepteurs couplés aux protéines G : des régulateurs allostériques du métabolisme cellulaire. Med Sci (Paris) 2012 ; 28 : 852–857. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Kniazeff J, Pin JP. Des dimères et des oligomères de RCPG, oui mais pourquoi ? Le récepteur GABAB sous interrogatoire. Med Sci (Paris) 2012 ; 28 : 858–863. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Jockers R, Ghabou F, Tadagaki K, Kamal M. Oligomérisation des proteins humaines et virales à sept domains transmembranaires : nouvelle stratégie virale pour manipuler la cellule hôte. Med Sci (Paris) 2012 ; 28 : 864–869. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  27. Granier S. Structure des récepteurs mu et delta des opiacés. Med Sci (Paris) 2012 ; 28 : 870–875. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Lebon G, Tate CG. Les récepteurs couplés aux protéines G dans la lumière. Med Sci (Paris) 2012 ; 28 : 876–882. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.