Free Access
Issue
Med Sci (Paris)
Volume 28, Number 12, Décembre 2012
Page(s) 1081 - 1086
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20122812018
Published online 21 December 2012
  1. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutrition 1935 ; 10 : 63–79. [Google Scholar]
  2. Cantó C, Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab 2009 ; 20 : 325–331. [CrossRef] [PubMed] [Google Scholar]
  3. Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med 2011 ; 32 : 159–221. [CrossRef] [PubMed] [Google Scholar]
  4. Fadini GP, Ceolotto G, Pagnin E, et al. At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging Cell 2011 ; 10 : 10–17. [CrossRef] [PubMed] [Google Scholar]
  5. Holloszy JO, Fontana L. Caloric restriction in humans. Exp Gerontol 2007 ; 42 : 709–712. [Google Scholar]
  6. Kemnitz JW. Calorie restriction and aging in nonhuman primates. ILAR J 2011 ; 52 : 66–77. [CrossRef] [PubMed] [Google Scholar]
  7. Roth GS, Ingram DK, Lane MA. Calorie restriction in primates: will it work and how will we know? J Am Geriatr Soc 1999 ; 47 : 896–903. [PubMed] [Google Scholar]
  8. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009 ; 325 : 201–204. [CrossRef] [PubMed] [Google Scholar]
  9. Kemnitz JW, Roecker EB, Weindruch R, et al. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am J Physiol 1994 ; 266 : E540–E547. [PubMed] [Google Scholar]
  10. Zainal TA, Oberley TD, Allison DB, et al. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 2000 ; 14 : 1825–1836. [CrossRef] [PubMed] [Google Scholar]
  11. Lane MA, Ball SS, Ingram DK, et al. Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points. Am J Physiol 1995 ; 268 : E941–E948. [PubMed] [Google Scholar]
  12. Colman RJ, Beasley TM, Allison DB, Weindruch R. Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J Gerontol A Biol Sci Med Sci 2008 ; 63 : 556–559. [CrossRef] [PubMed] [Google Scholar]
  13. Mattison JA, Lane MA, Roth GS, Ingram DK. Calorie restriction in rhesus monkeys. Exp Gerontol 2003 ; 38 : 35–46. [CrossRef] [PubMed] [Google Scholar]
  14. Roth GS, Ingram DK, Black A, Lane MA. Effects of reduced energy intake on the biology of aging: the primate model. Eur J Clin Nutr 2000 ; 54 : S15–S20. [CrossRef] [PubMed] [Google Scholar]
  15. Smith DL Jr, Mattison JA, Desmond RA, et al. Telomere dynamics in rhesus monkeys: no apparent effect of caloric restriction. J Gerontol A Biol Sci Med Sci 2011 ; 66 : 1163–1168. [CrossRef] [PubMed] [Google Scholar]
  16. Languille S, Blanc S, Blin O, et al. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev 2012 ; 11 : 150–62. [CrossRef] [PubMed] [Google Scholar]
  17. Perret M, Aujard F. Vieillissement et rythmes biologiques chez les primates. Med Sci (Paris) 2006 ; 22 : 279–283. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Dal-Pan A, Terrien J, Pifferi F, et al. Caloric restriction or resveratrol supplementation and ageing in a non-human primate: first-year outcome of the RESTRIKAL study in Microcebus murinus. Age 2011 ; 33 : 15–31. [CrossRef] [PubMed] [Google Scholar]
  19. Giroud S, Blanc S, Aujard F, et al. Chronic food shortage and seasonal modulations of daily torpor and locomotor activity in the grey mouse lemur (Microcebus murinus). Am J Physiol Regul Integr Comp Physiol 2008 ; 294 : R1958–R1967. [CrossRef] [PubMed] [Google Scholar]
  20. Dal-Pan A, Pifferi F, Marchal J, et al. Cognitive performances are selectively enhanced during chronic caloric restriction or resveratrol supplementation in a primate. Plos One 2011 ; 6 : 16581. [Google Scholar]
  21. Marchal J, Blanc S, Epelbaum J, et al. Effects of chronic calorie restriction or dietary resveratrol supplementation on insulin sensitivity markers in a primate, Microcebus murinus. PLoS One 2012 ; 7 : e34289. [CrossRef] [PubMed] [Google Scholar]
  22. Suzuki M, Willcox DC, Rosenbaum MW, Willcox BJ. Oxidative stress and longevity in okinawa: an investigation of blood lipid peroxidation and tocopherol in okinawan centenarians. Curr Gerontol Geriatr Res 2010 ; 380460. [PubMed] [Google Scholar]
  23. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 2004 ; 101 : 6659–6663. [Google Scholar]
  24. Fontana L, Villareal DT, Weiss EP, et al. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab 2007 ; 293 : E197–E202. [CrossRef] [PubMed] [Google Scholar]
  25. Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 2011 ; 14 : 275–287. [CrossRef] [PubMed] [Google Scholar]
  26. Fontana L, Weiss EP, Villareal DT, et al. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 2008 ; 7 : 681–687. [CrossRef] [PubMed] [Google Scholar]
  27. Soare A, Cangemi R, Omodei D, et al. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging (Albany NY) 2011 ; 3 : 374–379. [PubMed] [Google Scholar]
  28. Duffy PH, Feuers RJ, Leakey JA, et al. Effect of chronic caloric restriction on physiological variables related to energy metabolism in the male Fischer 344 rat. Mech Ageing Dev 1989 ; 48 : 117–133. [CrossRef] [PubMed] [Google Scholar]
  29. Lane MA, Baer DJ, Rumpler WV, et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci USA 1996 ; 93 : 4159–4164. [CrossRef] [Google Scholar]
  30. Mattson MP. The impact of dietary energy intake on cognitive aging. Front Aging Neurosci 2010 ; 2 : 5. [PubMed] [Google Scholar]
  31. Raffaghello L, Safdie F, Bianchi G, et al. Fasting and differential chemotherapy protection in patients. Cell Cycle 2010 ; 9 : 4474–4476. [CrossRef] [PubMed] [Google Scholar]
  32. Hunt ND, Li GD, Zhu M, et al. Effect of calorie restriction and refeeding on skin wound healing in the rat. Age (Dordr) 2011 (online). [Google Scholar]
  33. Kristan DM. Chronic calorie restriction increases susceptibility of laboratory mice (Mus musculus) to a primary intestinal parasite infection. Aging Cell 2007 ; 6 : 817–825. [CrossRef] [PubMed] [Google Scholar]
  34. Riedt CS, Buckley BT, Brolin RE, et al. Blood lead levels and bone turnover with weight reduction in women. J Expo Sci Environ Epidemiol 2009 ; 19 : 90–96. [CrossRef] [PubMed] [Google Scholar]
  35. Roth GS, Lane MA, Ingram DK. Caloric restriction mimetics: the next phase. Ann NY Acad Sci 2005 ; 1057 : 365–371. [CrossRef] [Google Scholar]
  36. Di Stefano A, Iannitelli A, Laserra S, Sozio P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin Drug Deliv 2011 ; 8 : 581–603. [CrossRef] [PubMed] [Google Scholar]
  37. González R, Ballester I, López-Posadas R, et al. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011 ; 51 : 331–362. [CrossRef] [PubMed] [Google Scholar]
  38. Huang X, Zhu HL. Resveratrol and its analogues: promising antitumor agents. Anticancer Agents Med Chem 2011 ; 11 : 479–490. [CrossRef] [PubMed] [Google Scholar]
  39. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev Drug Discov 2006 ; 5 : 493–506. [CrossRef] [PubMed] [Google Scholar]
  40. Yang CS, Wang ZY. Tea and cancer. J Natl Cancer Inst 1993 ; 85 : 1038–1049. [CrossRef] [PubMed] [Google Scholar]
  41. Tijburg LB, Wiseman SA, Meijer GW, Weststrate JA. Effects of green tea, black tea and dietary lipophilic antioxidants on LDL oxidizability and atherosclerosis in hypercholesterolaemic rabbits. Atherosclerosis 1997 ; 135 : 37–47. [CrossRef] [PubMed] [Google Scholar]
  42. Minor RK, Smith DL, Jr, Sossong AM, et al. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol 2010 ; 243 : 332–339. [CrossRef] [PubMed] [Google Scholar]
  43. Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 2011 ; 121 : 1231–1241. [CrossRef] [PubMed] [Google Scholar]
  44. Das F, Ghosh-Choudhury N, Dey N, et al. Unrestrained Mammalian target of rapamycin complexes 1 and 2 increase expression of phosphatase and tensin homolog deleted on chromosome 10 to regulate phosphorylation of akt kinase. J Biol Chem 2012 ; 287 : 3808–3822. [CrossRef] [PubMed] [Google Scholar]
  45. Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009 ; 9 : 407–416. [CrossRef] [PubMed] [Google Scholar]
  46. Reiter AK, Bolster DR, Crozier SJ, et al. Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab 2005 ; 288 : E980–E988. [CrossRef] [PubMed] [Google Scholar]
  47. Natali A, Ferrannini E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 2006 ; 49 : 434–441. [CrossRef] [PubMed] [Google Scholar]
  48. Galas S, Château MT, Pomiès P, et al. Aperçu de la diversité des modèles animaux dédiés à l’étude du vieillissement. Med Sci (Paris) 2012 ; 28 : 297–304. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Terret C, Solari F. L’homéostasie métabolique au cœur du vieillissement. Med Sci (Paris) 2012 ; 28 : 311–315. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Marchal J, Perret M, Aujard F., Pas de longévité accrue chez les macaques Rhésus soumis à une restriction calorique. Med Sci (Paris) 2012 ; 28 : 1074. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.