Free Access
Issue |
Med Sci (Paris)
Volume 28, Number 11, Novembre 2012
|
|
---|---|---|
Page(s) | 970 - 975 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20122811016 | |
Published online | 12 November 2012 |
- Peyron JF. Les multiples rôles de l’ubiquitinylation des protéines. Med Sci (Paris) 2001 ; 17 : 1327–1329. [CrossRef] [EDP Sciences] [Google Scholar]
- Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009 ; 10 : 319–331. [Google Scholar]
- Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009 ; 10 : 755–764. [CrossRef] [PubMed] [Google Scholar]
- Robinson PA, Ardley HC. Ubiquitin-protein ligases-novel therapeutic targets? Curr Protein Pept Sci 2004 ; 5 : 163–176. [CrossRef] [PubMed] [Google Scholar]
- Langdon WY, Hartley JW, Klinken SP, et al. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci USA 1989 ; 86 : 1168–1172. [CrossRef] [Google Scholar]
- Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains: from structures to functions. Nat Rev Mol Cell Biol 2009 ; 10 : 659–671. [CrossRef] [PubMed] [Google Scholar]
- Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001 ; 2 : 294–307. [CrossRef] [PubMed] [Google Scholar]
- Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters, Oncogene 2001 ; 20 : 6382–6402. [CrossRef] [PubMed] [Google Scholar]
- Baron R. L’ostéoclaste et les mécanismes moléculaires de la résorption osseuse. Med Sci (Paris) 2001 ; 17 : 1260–1269. [CrossRef] [EDP Sciences] [Google Scholar]
- Marie P. Différenciation, fonction et contrôle de l’ostéoblaste.Med Sci (Paris) 2001 ; 17 : 1252–1259. [CrossRef] [EDP Sciences] [Google Scholar]
- Chiusaroli R Sanjay A, Henriksen K, et al. Deletion of the gene encoding c-Cbl alters the ability of osteoclasts to migrate, delaying resorption and ossification of cartilage during the development of long bones. Dev Biol 2003 ; 261 : 537–547. [CrossRef] [PubMed] [Google Scholar]
- Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2005 ; 208 : 106–125. [CrossRef] [PubMed] [Google Scholar]
- Sanjay A, Miyazaki T, Itzstein C, et al. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J 2006 ; 273 : 5442–5456. [CrossRef] [PubMed] [Google Scholar]
- Adapala NS, Barbe MF, Langdon WY, et al. The loss of Cbl-phosphatidylinositol 3-kinase interaction perturbs RANKL-mediated signaling, inhibiting bone resorption and promoting osteoclast survival. J Biol Chem 2010 ; 285 : 36745–36758. [CrossRef] [PubMed] [Google Scholar]
- Nakajima A, Sanjay A, Chiusaroli R, et al. Loss of Cbl-b increases osteoclast bone-resorbing activity and induces osteopenia. J Bone Miner Res 2009 ; 24 : 1162–1172. [CrossRef] [PubMed] [Google Scholar]
- Purev E, Neff L, Horne WC, Baron R. c-Cbl and Cbl-b act redundantly to protect osteoclasts from apoptosis and to displace HDAC6 from beta-tubulin, stabilizing microtubules and podosomes. Mol Biol Cell 2009 ; 20 : 4021–4030. [CrossRef] [PubMed] [Google Scholar]
- Guénou H, Kaabeche K, Dufour C, et al. Down-regulation of ubiquitin ligase Cbl induced by twist haploinsufficiency in Saethre-Chotzen syndrome results in increased PI3K/Akt signaling and osteoblast proliferation. Am J Pathol 2006 ; 169 : 1303–1311. [CrossRef] [PubMed] [Google Scholar]
- Kaabeche K, Lemonnier J, Le Mée S, et al. Cbl-mediated degradation of Lyn and Fyn induced by constitutive FGFR-2 activation supports osteoblast differentiation. J Biol Chem 2004 ; 279 : 36259–36267. [CrossRef] [PubMed] [Google Scholar]
- Miraoui H, Ringe J, Häupl T, Marie PJ. Increased EGF- and PDGFα- receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet 2010 ; 19 : 1678–1689. [CrossRef] [PubMed] [Google Scholar]
- Miraoui H, Marie PJ. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Science Signaling 2010 ; 3 : re9. [CrossRef] [PubMed] [Google Scholar]
- Dufour C, Guénou H, Kaabeche K, et al. FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival. Bone, 2008 ; 42 : 1032–1039. [CrossRef] [PubMed] [Google Scholar]
- Kaabeche K, Guénou H, Bouvard D, et al. Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 2005 ; 118 : 1223–1232. [CrossRef] [PubMed] [Google Scholar]
- Brennan T, Adapala NS, Barbe MF, et al. Abrogation of Cbl-PI3K interaction increases bone formation and osteoblast proliferation. Calcif Tissue Int 2011 ; 89 : 396–410. [CrossRef] [PubMed] [Google Scholar]
- Suzue N, Nikawa T, Onishi Y, et al. Ubiquitin ligase Cbl-b downregulates bone formation through suppression of IGF-I signaling in osteoblasts during denervation. J Bone Miner Res 2006 ; 21 : 722–734. [CrossRef] [PubMed] [Google Scholar]
- Sévère N, Miraoui H, Marie PJ. The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem 2011 ; 286 : 24443–24450. [CrossRef] [PubMed] [Google Scholar]
- Kumar EA, Charvet CD, Lokesh GL, Natarajan A. High-throughput fluorescence polarization assay to identify inhibitors of Cbl(TKB)-protein tyrosine kinase interactions. Anal Biochem 2011 ; 411 : 254–260. [CrossRef] [PubMed] [Google Scholar]
- Kumar EA, Yuan Z, Palermo NY, et al. Peptide truncation leads to a twist and an unusual increase in affinity for casitas B-lineage lymphoma tyrosine kinase binding domain. J Med Chem 2012 ; 55 : 3583–3587. [CrossRef] [PubMed] [Google Scholar]
- Ciechanover A. The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 2006 ; 66 : S7–S19. [CrossRef] [PubMed] [Google Scholar]
- Naramura M, Nadeau S, Mohapatra B, et al. Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders. Oncotarget 2011 ; 2 : 245–250. [PubMed] [Google Scholar]
- Kales SC, Ryan PE, Nau MM, Lipkowitz S. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res 2010 ; 70 : 4789–4794. [CrossRef] [PubMed] [Google Scholar]
- Tan YH, Krishnaswamy S, Nandi S, et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET, EGFR tyrosine kinases. PLoS One 2010 ; 5 : e8972. [CrossRef] [PubMed] [Google Scholar]
- Pray TR, Parlati F, Huang J, et al. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat 2002 ; 5 : 249–258. [CrossRef] [PubMed] [Google Scholar]
- Sévère N, Dieudonné F-X, Marty C, et al. Targeting the E3 ubiquitin ligase c-Cbl decreases osteosarcoma cell growth and survival and reduces tumorigenesis. J Bone Miner Res 2012 ; 27 : 2108–2117. [CrossRef] [PubMed] [Google Scholar]
- Shi D, Grossman SR. Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biol Ther 2010 ; 10 : 737–747. [CrossRef] [PubMed] [Google Scholar]
- Baldin V, Coux O. L’étiquette de la mort. Med Sci (Paris) 2004 ; 20 : 1156–1157. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.