Free Access
Issue
Med Sci (Paris)
Volume 28, Number 5, Mai 2012
Page(s) 547 - 550
Section Forum
DOI https://doi.org/10.1051/medsci/2012285022
Published online 30 May 2012
  1. Van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002 ; 347 : 1999–2009. [CrossRef] [PubMed] [Google Scholar]
  2. Tan PK, Downey TJ, Spitznagel EL Jr. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 2003 ; 31 : 5676–5684. [CrossRef] [PubMed] [Google Scholar]
  3. Jordan BR. How consistent are gene expression chip platforms? BioEssays 2004 ; 26 : 1236–1242. [CrossRef] [PubMed] [Google Scholar]
  4. Jordan B. Coup de tabac sur les puces. Med Sci (Paris) 2004 ; 20 : 487–490. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. MAQC Consortium. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006 ; 24 : 1151–1161. [CrossRef] [PubMed] [Google Scholar]
  6. Cardoso F, Piccart-Gebhart M, Van’t Veer L, Rutgers E. TRANSBIG Consortium. The MINDACT trial: the first prospective clinical validation of a genomic tool. Mol Oncol 2007 ; 1 : 246–251. [CrossRef] [PubMed] [Google Scholar]
  7. Venet D, Dumont JE, Detours V. Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 2011 ; 7 : e 1002240. [CrossRef] [Google Scholar]
  8. Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 2006 ; 103 : 5923–5928. [CrossRef] [Google Scholar]
  9. Krishnan V, Han MH, Graham DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007 ; 131 : 391–404. [CrossRef] [PubMed] [Google Scholar]
  10. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004 ; 351 : 2817–2826. [CrossRef] [PubMed] [Google Scholar]
  11. Sotiriou C, Wirapati P, Loi S, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006 ; 98 : 262–272. [CrossRef] [PubMed] [Google Scholar]
  12. Korkola JE, Blaveri E, DeVries, et al. Identification of a robust gene signature that predicts breast cancer outcome in independent data sets. BMC Cancer 2007 ; 7 : 61. [CrossRef] [PubMed] [Google Scholar]
  13. Taube JH, Herschkowitz JI, Komurov K, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010 ; 107 : 15449–15454. [CrossRef] [Google Scholar]
  14. Haibe-Kains B, Desmedt C, Loi S, et al. A three-gene model to robustly identify breast cancer molecular subtypes. J Natl Cancer Inst 2012 ; 104 : 311–325. [CrossRef] [PubMed] [Google Scholar]
  15. Detours V. Confounded cancer markers. The Scientist, December 7, 2011. http://the-scientist.com/2011/12/07/opinion-confounded-cancer-markers/ [Google Scholar]
  16. Bertucci F, Birnbaum D. Génomique et recherche clinique en cancérologie mammaire. Med Sci (Paris) 2012 ; (Suppl 1) : 14–18. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Michiels S, Hill C. Défis statistiques posés par les biopuces : autant d’espoir que de faux positifs ? Med Sci (Paris) 2008 ; 24 : 317–319 [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.