Free Access
Med Sci (Paris)
Volume 28, Number 2, Février 2012
Page(s) 219 - 221
Section Dernière Heure
Published online 27 February 2012
  1. International Stem Cell Initiative, Amps K, Andrews PW, Anyfantis G, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 2011 ; 29 : 1132–1144. [CrossRef] [PubMed] [Google Scholar]
  2. Crook JM, Hei D, Stacey G. The international stem cell banking initiative (ISCBI): raising standards to bank on. In Vitro Cell Dev Biol Anim 2010 ; 46 : 169–172. [Google Scholar]
  3. Lefort N, Feyeux M, Bas C, et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 2008 ; 26 : 1364–1366. [CrossRef] [PubMed] [Google Scholar]
  4. Lefort N, Feyeux M, Bas C, et al. Les cellules souches embryonnaires humaines révèlent l’existence d’une région hautement instable du génome. Med Sci (Paris) 2009 ; 25 : 99–101. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Koch P, Opitz T, Steinbeck JA, et al. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 2009 ; 106 : 3225–3230. [CrossRef] [Google Scholar]
  6. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965 ; 37 : 614–636. [CrossRef] [PubMed] [Google Scholar]
  7. Varela C, Denis JA, Polentes J, et al. Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells. J Clin Invest 2012 ; 122 : 569–574. [CrossRef] [PubMed] [Google Scholar]
  8. Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities ? Nat Rev Neurosci 2010 ; 11 : 176–187. [PubMed] [Google Scholar]
  9. Diaferia GR, Conti L, Redaelli S, et al. Systematic chromosomal analysis of cultured mouse neural stem cell lines. Stem Cells Dev 2011 ; 20 : 1411–1423. [CrossRef] [PubMed] [Google Scholar]
  10. Lejeune J, Maunoury C, Prieur M, et al. A jumping translocation (5p;15q), (8q;15q), and (12q;15q) (author’s transl). Ann Genet 1979 ; 22 : 210–213. [PubMed] [Google Scholar]
  11. Sawyer JR, Tricot G, Mattox S, et al. Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 1998 ; 91 : 1732–1741. [PubMed] [Google Scholar]
  12. Faria C, Miguens J, Antunes JL. Pediatric brain tumors: genetics and clinical outcome. J Neurosurg Pediatr 2010 ; 5 : 263–270. [CrossRef] [PubMed] [Google Scholar]
  13. Ehrlich M, Jackson K, Weemaes C. Immunodeficiency centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis 2006 ; 1 : 2. [CrossRef] [PubMed] [Google Scholar]
  14. Harrison NJ. Genetic instability in neural stem cells: an inconvenient truth ? J Clin Invest 2012 ; 122 : 484–486. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.