Free Access
Med Sci (Paris)
Volume 27, Number 3, Mars 2011
Page(s) 269 - 274
Section M/S revues
Published online 30 March 2011
  1. LeeRH, PulinAA, SeoMJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009 ; 5 : 54-63. [CrossRef] [PubMed] [Google Scholar]
  2. Le BlancK, FrassoniF, BallL, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008 ; 371 : 1579-1586. [CrossRef] [PubMed] [Google Scholar]
  3. von BoninM, StolzelF, GoedeckeA, et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 2009 ; 43 : 245-251. [CrossRef] [PubMed] [Google Scholar]
  4. ParekkadanB, MilwidJM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 2010 ; 12 : 87-117. [CrossRef] [PubMed] [Google Scholar]
  5. SunL, WangD, LiangJ, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 2010 ; 62 : 2467-2475. [CrossRef] [PubMed] [Google Scholar]
  6. BenvenutoF, FerrariS, GerdoniE, et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. stem cells 2007 ; 25 : 1753-1760. [CrossRef] [PubMed] [Google Scholar]
  7. UccelliA, MorettaL, PistoiaV. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008 ; 8 : 726-736. [Google Scholar]
  8. LiottaF, AngeliR, CosmiL, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. stem cells 2008 ; 26 : 279-289. [CrossRef] [PubMed] [Google Scholar]
  9. SelmaniZ, NajiA, ZidiI, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. stem cells 2008 ; 26 : 212-222. [CrossRef] [PubMed] [Google Scholar]
  10. GhannamS, PeneJ, Torcy-MoquetG, et al. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Immunol 2010 ; 185 : 302-312. [CrossRef] [Google Scholar]
  11. KramperaM, CosmiL, AngeliR, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006 ; 24 : 386-398. [CrossRef] [PubMed] [Google Scholar]
  12. Maby-El HajjamiH, Ame-ThomasP, PangaultC, et al. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2, 3 dioxygenase. Cancer Res 2009 ; 69 : 3228-3237. [CrossRef] [PubMed] [Google Scholar]
  13. TraggiaiE, VolpiS, SchenaF, et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 2008 ; 26 : 562-569. [CrossRef] [PubMed] [Google Scholar]
  14. RafeiM, HsiehJ, FortierS, et al. Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 2008 ; 112 : 4991-4998. [CrossRef] [PubMed] [Google Scholar]
  15. NautaAJ, KruisselbrinkAB, LurvinkE, et al. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. Immunol 2006 ; 177 : 2080-2087. [Google Scholar]
  16. DjouadF, CharbonnierLM, BouffiC, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. stem cells 2007 ; 25 : 2025-2032. [CrossRef] [PubMed] [Google Scholar]
  17. SpaggiariGM, AbdelrazikH, BecchettiF, MorettaL. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 2009 ; 113 : 6576-6583. [CrossRef] [PubMed] [Google Scholar]
  18. SpaggiariGM, CapobiancoA, AbdelrazikH, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood 2008 ; 111 : 1327-1333. [CrossRef] [PubMed] [Google Scholar]
  19. SpaggiariGM, CapobiancoA, BecchettiS, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006 ; 107 : 1484-1490. [CrossRef] [PubMed] [Google Scholar]
  20. MartinetL, Fleury-CappellessoS, GadelorgeM, et al. A regulatory cross-talk between Vgamma9Vdelta2 T lymphocytes and mesenchymal stem cells. Eur J Immunol 2009 ; 39 : 752-762. [CrossRef] [PubMed] [Google Scholar]
  21. OrtizLA, DutreilM, FattmanC, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007 ; 104 : 11002-11007. [CrossRef] [Google Scholar]
  22. KimJ, HemattiP. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 2009 ; 37 : 1445-1453. [CrossRef] [PubMed] [Google Scholar]
  23. NemethK, LeelahavanichkulA, YuenPS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009 ; 15 : 42-49. [CrossRef] [PubMed] [Google Scholar]
  24. RaffaghelloL, BianchiG, BertolottoM, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008 ; 26 : 151-162. [CrossRef] [PubMed] [Google Scholar]
  25. PolchertD, SobinskyJ, DouglasG, et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 2008 ; 38 : 1745-1755. [CrossRef] [PubMed] [Google Scholar]
  26. NemethK, Keane-MyersA, BrownJM, et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 2010 ; 107 : 5652-5657. [CrossRef] [Google Scholar]
  27. OpitzCA, LitzenburgerUM, LutzC, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2, 3-dioxygenase-1 via interferon-beta and protein kinase R. stem cells 2009 ; 27 : 909-919. [CrossRef] [PubMed] [Google Scholar]
  28. Romieu-MourezR, FrancoisM, BoivinMN, et al. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. Immunol 2009 ; 182 : 7963-7973. [CrossRef] [Google Scholar]
  29. GonzalezMA, Gonzalez-ReyE, RicoL, et al. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 2009 ; 60 : 1006-1019. [CrossRef] [PubMed] [Google Scholar]
  30. JonesS, HorwoodN, CopeA, DazziF. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. Immunol 2007 ; 179 : 2824-2831. [Google Scholar]
  31. FrancoisM, Romieu-MourezR, Stock-MartineauS, et al. Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood 2009 ; 114 : 2632-2638. [PubMed] [Google Scholar]
  32. NautaAJ, WesterhuisG, KruisselbrinkAB, et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006 ; 108 : 2114-2120. [CrossRef] [PubMed] [Google Scholar]
  33. TokoyodaK, HauserAE, NakayamaT, RadbruchA. Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 2010 ; 10 : 193-200. [CrossRef] [PubMed] [Google Scholar]
  34. MuellerSN, GermainRN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 2009 ; 9 : 618-629. [PubMed] [Google Scholar]
  35. PedutoL, DulauroyS, LochnerM, et al. Inflammation recapitulates the ontogeny of lymphoid stromal cells. Immunol 2009 ; 182 : 5789-5799. [CrossRef] [Google Scholar]
  36. CoppeJP, DesprezPY, KrtolicaA, CampisiJ. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010 ; 5 : 99-118. [CrossRef] [PubMed] [Google Scholar]
  37. CharbordP, CasteillaL. La biologie des cellules souches mésenchymateuses d’origine humaine. Med Sci (Paris) 2011 ; 27 : 261-268. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. LazennecG. Les cellules souches mésenchymateuses : armes ou dangers pour le traitement des cancers ?. Med Sci (Paris) 2011 ; 27 : 285-288. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.