Free Access
Issue |
Med Sci (Paris)
Volume 27, Number 2, Février 2011
|
|
---|---|---|
Page(s) | 170 - 176 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2011272170 | |
Published online | 08 March 2011 |
- Goldbeter A, Gérard C, Leloup JC. Biologie des systèmes et rythmes cellulaires. Med Sci (Paris) 2010 ; 26 : 49-56. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Berridge M, Bootman M, Roderick H. Calcium signaling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 2003 ; 1 : 11-21. [Google Scholar]
- Kushnir A, Betzenhauser M, Marks A. Ryanodine receptor studies using genetically engineered mice. FEBS Lett 2010 ; 584 : 1956-1965. [CrossRef] [PubMed] [Google Scholar]
- Bezprozvanny I, Watras J, Ehrlich B. Bell-shaped calcium responses of InsP3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991 ; 351 : 751-754. [CrossRef] [PubMed] [Google Scholar]
- Marchant J, Parker I. Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO J 2001 ; 20 : 65-76. [Google Scholar]
- Swillens S, Dupont G, Combettes L, Champeil P. From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. Proc Natl Acad Sci USA 1999 ; 96 : 13750-13755. [CrossRef] [Google Scholar]
- Shuai J, Jung P. Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci USA 2003 ; 100 : 506-510. [CrossRef] [Google Scholar]
- Lechleiter J, Clapham D. Molecular mechanisms of intracellular calcium excitability in Xenopus laevis oocytes. Cell 1992 ; 69 : 283-294. [CrossRef] [PubMed] [Google Scholar]
- Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007 ; 87 : 593-658. [Google Scholar]
- Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 1998 ; 396 : 81-84. [CrossRef] [PubMed] [Google Scholar]
- Miyakawa T, Maeda A, Yamazawa T, et al. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 1999 ; 18 : 1303-1308. [CrossRef] [PubMed] [Google Scholar]
- Dupont G, Combettes L. Modelling the effect of specific inositol 1, 4, 5 trisphosphate receptor isoforms on cellular Ca2+ signals. Biol Cell 2006 ; 98 : 171-182. [CrossRef] [PubMed] [Google Scholar]
- Rhee S. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001 ; 70 : 281-312. [CrossRef] [PubMed] [Google Scholar]
- Takazawa M, Lemos M, Delvaux A. Rat brain inositol 1 4 5-trisphosphate 3-kinase. Ca2+ sensitivity, purification and antibody production. Biochem J 1990 ; 268 : 213-217. [PubMed] [Google Scholar]
- Meyer T, Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem 1991 ; 20 : 153-174. [CrossRef] [PubMed] [Google Scholar]
- Kummer U, Olsen L, Dixon C, et al. Switching from simple to complex oscillations in calcium signaling. Biophys J 2000 ; 79 : 1188-1195. [Google Scholar]
- Dupont G, Koukoui O, Clair C, et al. Ca2+ oscillations in hepatocytes do not require the modulation of InsP3 3-kinase activity by Ca2+. FEBS Lett 2003 ; 534 : 101-105. [CrossRef] [PubMed] [Google Scholar]
- Dupont G, Combettes L, Leybaert L. Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 2007 ; 261 : 193-245. [CrossRef] [PubMed] [Google Scholar]
- Sneyd J, Tsaneva-Atanasova K, Reznikov V, et al. A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci USA 2006 ; 103 : 1675-1680. [CrossRef] [Google Scholar]
- Falcke M. Reading the patterns in living cells: the physics of Ca2+ signaling. Adv Physics 2004 ; 53 : 255-440. [Google Scholar]
- Dupont G, Abou-Lovergne A, Combettes L. Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. Biophys J 2008 ; 95 : 2193-2202. [CrossRef] [PubMed] [Google Scholar]
- Rapp P. Why are so many biological systems periodic? Progr Neurobiol 1987 ; 29 : 261-273. [CrossRef] [Google Scholar]
- De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 1998 ; 279 : 227-230. [CrossRef] [PubMed] [Google Scholar]
- Dupont G, Houart P, De Koninck P. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. Cell Calcium 2003 ; 34 : 485-497. [CrossRef] [PubMed] [Google Scholar]
- Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm 1994 ; 43 (suppl) : 1-11. [PubMed] [Google Scholar]
- Toth S, Huneau D, Banrezes B, Ozil JP. Egg activation is the result of calcium signal summation in the mouse. Reproduction 2006 ; 131 : 27-34. [CrossRef] [PubMed] [Google Scholar]
- Dupont G, Heytens E, Leybaert L. Oscillatory Ca2+ dynamics and cell cycle resumption at fertilization in mammals: a modelling approach. Int J Dev Biol 2010 ; 54 : 655-665. [CrossRef] [PubMed] [Google Scholar]
- Dolmetsch R, Xu K, Lewis R. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 1998 ; 392 : 933-938. [CrossRef] [PubMed] [Google Scholar]
- Graf P, vom Dahl S, Sies H. Sustained oscillations in extracellular calcium concentrations upon hormonal stimulation of perfused rat liver. Biochem J 1987 ; 241 : 933-936. [PubMed] [Google Scholar]
- Parri H, Gould T, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001 ; 4 : 803-812. [CrossRef] [PubMed] [Google Scholar]
- Fellin T, Sul J, D’Ascenzo M, et al. Bidirectional astrocyte-neuron communicaion: the many roles of glutamate and ATP. Novartis Found Symp 2006 ; 27 : 208-217. [CrossRef] [Google Scholar]
- Tordjmann T. Calcium signaling. In : Dufour JF, Clavien PA, eds. Signaling pathways in liver diseases. Berlin-Heidelberg : Springer-Verlag, 2009: 455-464. [Google Scholar]
- Dupont G, Tordjmann T, Clair C, et al. Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes. FASEB J 2000 ; 14 : 279-289. [PubMed] [Google Scholar]
- Clair C, Chalumeau C, Tordjmann T, et al. Investigation of the roles of Ca2+ and InsP3 diffusion in the coordination of Ca2+ signals between connected hepatocytes. J Cell Sci 2001 ; 114 : 1999-2007. [PubMed] [Google Scholar]
- Tordjmann T, Berthon B, Claret M, Combettes L. Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist. EMBO J 1997 ; 16 : 5398-5407. [Google Scholar]
- Seseke FG, Gardemann A, Jungermann K. Signal propagation via gap junctions, a key step in the regulation of liver metabolism by the sympathetic hepatic nerves. FEBS Lett 1992 ; 301 : 265-270. [CrossRef] [PubMed] [Google Scholar]
- Gonzales E, Julien B, Serrière-Lanneau V, et al. ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 2010 ; 52 : 54-62. [CrossRef] [PubMed] [Google Scholar]
- Magnino F, St-Pierre M, Lüthi M, et al. Expression of intracellular calcium channels and pumps after partial hepatectomy in rat. Mol Cell Biol Res Commun 2000 ; 3 : 374-379. [CrossRef] [PubMed] [Google Scholar]
- Nicou A, Serrière V, Hilly M, et al. Remodelling of calcium signalling during liver regeneration in the rat. J Hepatol 2007 ; 46 : 247-256. [CrossRef] [PubMed] [Google Scholar]
- Lagoudakis L, Garcin I, Julien B, et al. Cytosolic calcium regulates liver regeneration in the rat. Hepatology 2010 ; 52 : 602-611. [CrossRef] [PubMed] [Google Scholar]
- Lacampagne A, Fauconnier J, Richard S. Récepteur de la ryanodine et dysfonctionnement myocardique. Med Sci (Paris) 2008 ; 24 : 399-405. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.