Free Access
Issue
Med Sci (Paris)
Volume 26, Number 10, Octobre 2010
Page(s) 855 - 860
Section M/S revues
DOI https://doi.org/10.1051/medsci/20102610855
Published online 15 October 2010
  1. Plauchu H, Bideau A, Robert JM. Nouv Presse Med 1978 ; 7 : 1723-5. [Google Scholar]
  2. Plauchu H, Bideau A, Revol L, Robert JM. Étude généalogique de la maladie de Rendu-Osler dans une population rurale (ou « Quand un Haut-Jurassien saigne du nez »). Med Hyg 1978 ; 36 : 1223-9. [Google Scholar]
  3. Brunet G, Lesca G, Genin E, et al. Trente ans d’étude de la maladie de Rendu-Osler en France : démographie historique, génétique des populations et biologie moléculaire. Population 2009 ; 62 : 305-26. [Google Scholar]
  4. Plauchu H, Brunet G, Bideau A, Robert JM. La maladie de Rendu-Osler. Le Concours Médical 1992 ; 114 : 2469-76. [Google Scholar]
  5. Plauchu H, de Chadarevian JP, Bideau A, Robert JM. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet 1989 ; 32 : 291-7. [Google Scholar]
  6. Bideau A, Plauchu H, Brunet G, Robert J. Epidemiological investigation of Rendu-Osler disease in France: its geographical distribution and prevalence. Population 1989 ; 44 : 3-22. [Google Scholar]
  7. Shovlin CL, Guttmacher AE, Buscarini E, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 2000 ; 91 : 66-7. [Google Scholar]
  8. Plauchu H, Saurin JC, Henry L, et al. Maladie de Rendu-Osler ou télangiestasie hémorragique héréditaire : complications et traitements. Med Ther 1998 , 4 : 223-9. [Google Scholar]
  9. McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 1994 ; 8 : 345-51. [Google Scholar]
  10. Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptorlike kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 1996 ; 13 : 189-95. [Google Scholar]
  11. Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 2004 ; 363 : 852-9. [Google Scholar]
  12. Feige J, Quirin N, Souchelnitskiy S. TGFβ, un peptide biologique sous contrôle : formes latentes et mécanisme d’activation. Med Sci (Paris) 1996 ; 12 : 929-39. [Google Scholar]
  13. David L, Feige JJ, Bailly S. Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 2009 ; 20 : 203-12. [Google Scholar]
  14. Letarte M. Le rôle de l’endogline dans le système vasculaire et cardiovasculaire. Med Sci (Paris) 2000 ; 16 : 968-73. [Google Scholar]
  15. Koleva RI, Conley BA, Romero D, et al. Endoglin structure and function: Determinants of endoglin phosphorylation by TGFbeta receptors. J Biol Chem 2006 ; 281 : 25110-23. [Google Scholar]
  16. Ricard N, Bidart M, Mallet C, et al. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood 2010 (sous presse). [Google Scholar]
  17. Sorensen LK, Brooke BS, Li DY, Urness LD. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFbeta coreceptor. Dev Biol 2003 ; 261 : 235-50. [Google Scholar]
  18. Toporsian M, Jerkic M, Zhou YQ, et al. Spontaneous adult-onset pulmonary arterial hypertension attributable to increased endothelial oxidative stress in a murine model of hereditary hemorrhagic telangiectasia. Arterioscler Thromb Vasc Biol 2010 ; 30 : 509-17. [Google Scholar]
  19. van Laake LW, van den Driesche S, Post S, et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 2006 ; 114 : 2288-97. [Google Scholar]
  20. Park SO, Lee YJ, Seki T, et al. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 2008 ; 111 : 633-42. [Google Scholar]
  21. Park SO, Wankhede M, Lee YJ, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 2009 ; 119 : 3487-96. [Google Scholar]
  22. Roman BL, Pham VN, Lawson ND, et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 2002 ; 129 : 3009-19. [Google Scholar]
  23. Goumans MJ, Valdimarsdottir G, Itoh S, et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 2003 ; 12 : 817-28. [Google Scholar]
  24. David L, Mallet C, Mazerbourg S, et al. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 2007 ; [Google Scholar]
  25. 109 : 1953-61. [Google Scholar]
  26. Scharpfenecker M, van Dinther M, Liu Z, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 2007 ; 120 : 964-72. [Google Scholar]
  27. David L, Mallet C, Keramidas M, et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 2008 ; 102 : 914-22. [Google Scholar]
  28. Lamouille S, Mallet C, Feige JJ, Bailly S. Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 2002 ; 100 : 4495-501. [Google Scholar]
  29. Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF- beta type I receptors. EMBO J 2002 ; 21 : 1743-53. [Google Scholar]
  30. Dupuis-Girod S, Bailly S, Plauchu H. Hereditary hemorrhagic telangiectasia (HHT): from molecular biology to patient care. J Thromb Haemost 2010 ; 8 : 1447-56. [Google Scholar]
  31. Cézé N, Lecomte T, Watier H. Anticorps monoclonaux thérapeutiques et ciblage vasculaire. Med Sci (Paris) 2009 ; 25 : 1099-104. [Google Scholar]
  32. Flieger D, Hainke S, Fischbach W. Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol 2006 ; 85 : 631-2. [Google Scholar]
  33. Mitchell A, Adams LA, Macquillan G, et al. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl 2008 ; 14 : 210-3. [Google Scholar]
  34. Simonds J, Miller F, Mandel J, Davidson TM. The effect of bevacizumab (Avastin) treatment on epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope 2009 ; 119 : 988-92. [Google Scholar]
  35. Davidson TM, Olitsky SE, Wei JL. Hereditary hemorrhagic telangiectasia/avastin. Laryngoscope 2010 ; 120 : 432-5. [Google Scholar]
  36. Bowcock SJ, Patrick HE. Lenalidomide to control gastrointestinal bleeding in hereditary haemorrhagic telangiectasia: potential implications for angiodysplasias? Br J Haematol 2009 ; 146 : 220-2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.