Free Access
Issue
Med Sci (Paris)
Volume 26, Number 6-7, Juin–Juillet 2010
Page(s) 621 - 626
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010266-7621
Published online 15 June 2010
  1. Lee JJ, Lee NA. Eosinophil degranulation : an evolutionary vestige or a universally destructive effector function ? Clin Exp Allergy 2005 ; 35 : 986-94. [Google Scholar]
  2. Decot V, Capron M. Eosinophils: structure and functions. Presse Med 2006 ; 35 : 113-24. [Google Scholar]
  3. Carreras E, Boix E, Rosenberg HF, et al. Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 2003 ; 42 : 6636-44. [Google Scholar]
  4. Yang D, Chan Q, Su SB, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 2008 ; 205 : 79-90. [Google Scholar]
  5. Holzl MA, Hofer J, Steinberger P, et al. Host antimicrobial proteins as endogenous immunomodulators. Immunol Lett 2008 ; 119 : 4-11. [Google Scholar]
  6. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005 ; 6 : 551-7. [Google Scholar]
  7. Driss V, Legrand F, Hermann E, et al. TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood 2009 ; 113 : 3235-44. [Google Scholar]
  8. Yousefi S, Gold JA, Andina N, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008 ; 14 : 949-53. [Google Scholar]
  9. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004 ; 303 : 1532-5. [Google Scholar]
  10. Melo RC, Spencer LA, Dvorak AM, Weller PF. Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J Leukoc Biol 2008 ; 83 : 229-36. [Google Scholar]
  11. Hogan SP, Rosenberg HF, Moqbel R, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008 ; 38 : 709-50. [Google Scholar]
  12. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007 ; 81 : 1-5. [Google Scholar]
  13. Bolton SJ, McNulty CA, Thomas RJ, et al. Expression of and functional responses to protease-activated receptors on human eosinophils. J Leukoc Biol 2003 ; 74 : 60-8. [Google Scholar]
  14. Inoue Y, Matsuwaki Y, Shin SH, et al. Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. J Immunol 2005 ; 175 : 5439-47. [Google Scholar]
  15. Kato M, Abraham RT, Okada S, Kita H. Ligation of the beta2 integrin triggers activation and degranulation of human eosinophils. Am J Respir Cell Mol Biol 1998 ; 18 : 675-86. [Google Scholar]
  16. Svensson L, Redvall E, Bjorn C, et al. House dust mite allergen activates human eosinophils via formyl peptide receptor and formyl peptide receptor - like 1. Eur J Immunol 2007 ; 37 : 1966-77. [Google Scholar]
  17. Wong CK, Cheung PF, Ip WK, Lam CW. Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J Respir Cell Mol Biol 2007 ; 37 : 85-96. [Google Scholar]
  18. Nagase H, Okugawa S, Ota Y, et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 2003 ; 171 : 3977-82. [Google Scholar]
  19. Plotz SG, Lentschat A, Behrendt H, et al. The interaction of human peripheral blood eosinophils with bacterial lipopolysaccharide is CD14 dependent. Blood 2001 ; 97 : 235-41. [Google Scholar]
  20. Meerschaert J, Busse WW, Bertics PJ, Mosher DF. CD14+ cells are necessary for increased survival of eosinophils in response to lipopolysaccharide. Am J Respir Cell Mol Biol 2000 ; 23 : 780-7. [Google Scholar]
  21. Phipps S, Lam CE, Mahalingam S, et al. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 2007 ; 110 : 1578-86. [Google Scholar]
  22. Legrand F, Driss V, Woerly G, et al. A functional gammadeltaTCR/CD3 complex distinct from gammadeltaT cells is expressed by human eosinophils. PLoS One 2009 ; 4 : e5926. [Google Scholar]
  23. Layland LE, Wagner H, da Costa CU. Lack of antigen-specific Th1 response alters granuloma formation and composition in Schistosoma mansoni - infected MyD88−/− mice. Eur J Immunol 2005 ; 35 : 3248-57. [Google Scholar]
  24. Rosenberg HF, Dyer KD, Domachowske JB. Respiratory viruses and eosinophils: exploring the connections. Antiviral Res 2009 ; 83 : 1-9. [Google Scholar]
  25. Klebanoff SJ, Coombs RW. Virucidal effect of stimulated eosinophils on human immunodeficiency virus type 1. AIDS Res Hum Retrovir 1996 ; 12 : 25-9. [Google Scholar]
  26. Yoon J, Ponikau JU, Lawrence CB, Kita H. Innate antifungal immunity of human eosinophils mediated by a beta 2 integrin, CD11b. J Immunol 2008 ; 181 : 2907-15. [Google Scholar]
  27. Matsuwaki Y, Wada K, White TA, et al. Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol 2009 ; 183 : 6708-16. [Google Scholar]
  28. Hatano Y, Taniuchi S, Masuda M, et al. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. Apmis 2009 ; 117 : 115-23. [Google Scholar]
  29. Castro AG, Esaguy N, Macedo PM, et al. Live but not heat-killed mycobacteria cause rapid chemotaxis of large numbers of eosinophils in vivo and are ingested by the attracted granulocytes. Infect Immun 1991 ; 59 : 3009-14. [Google Scholar]
  30. Persson T, Andersson P, Bodelsson M, et al. Bactericidal activity of human eosinophilic granulocytes against Escherichia coli. Infect Immun 2001 ; 69 : 3591-6. [Google Scholar]
  31. Svensson L, Wenneras C. Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect 2005 ; 7 : 720-8. [Google Scholar]
  32. Gougerot-Pocidalo MA, El Benna J, My-Chan Dang P, Elbim C. Quand les polynucléaires neutrophiles attrapent les agents pathogènes dans leurs filets. Med Sci (Paris) 2007 ; 23 : 464-5. [Google Scholar]
  33. Catros V, Toutirais O, Bouet F, et al. Lymphocytes Tyδ en cancérologie : des lymphocytes tueurs non conventionnels. Med Sci (Paris) 2010 ; 26 : 185-91. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.