Free Access
Issue
Med Sci (Paris)
Volume 26, Number 4, Avril 2010
Page(s) 411 - 416
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010264411
Published online 15 April 2010
  1. Scholer HR, Balling R, Hatzopoulos AK, et al. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 1989; 8 : 2551–7. [Google Scholar]
  2. Okamoto K, Okazawa H, Okuda A, et al. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 1990; 60 : 461–72. [Google Scholar]
  3. Rosner MH, Vigano MA, Ozato K, et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 1990; 345 : 686–92. [Google Scholar]
  4. Scholer HR, Dressler GR, Balling R, et al. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 1990; 9 : 2185–95. [Google Scholar]
  5. err W, Sturm RA, Clerc RG, et al. The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev 1988; 2 : 1513–6. [Google Scholar]
  6. Scholer HR. Octamania: the POU factors in murine development. Trends Genet 1991; 7 : 323–9. [Google Scholar]
  7. Jin VX, O’Geen H, Iyengar S, et al. Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res 2007; 17 : 807–17. [Google Scholar]
  8. Brehm A, Ovitt CE, Scholer HR. Oct-4: more than just a POUerful marker of the mammalian germline ? APMIS 1998; 106 : 114–26. [Google Scholar]
  9. Herr W, Cleary MA. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 1995; 9 : 1679–93. [Google Scholar]
  10. Mathur D, Danford TW, Boyer LA, et al. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol 2008; 9 : R126. [Google Scholar]
  11. Lee J, Kim HK, Rho JY, Han YM, Kim J. The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem 2006; 281 : 33554–65. [Google Scholar]
  12. Cauffman G, Liebaers I, Van Steirteghem A, Van de Velde H. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 2006; 24 : 2685–91. [Google Scholar]
  13. Wang X, Zhao Y, Xiao Z, et al. Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 2009; 27 : 1265–75. [Google Scholar]
  14. Palmieri SL, Peter W, Hess H, Scholer HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 1994; 166 : 259–67. [Google Scholar]
  15. Downs KM. Systematic localization of Oct-3/4 to the gastrulating mouse conceptus suggests manifold roles in mammalian development. Dev Dyn 2008; 237 : 464–75. [Google Scholar]
  16. Pesce M, Wang X, Wolgemuth DJ, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 1998; 71 : 89–98. [Google Scholar]
  17. Cauffman G, Van de Velde H, Liebaers I, Van Steirteghem A. Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod 2005; 11 : 173–81. [Google Scholar]
  18. Atlasi Y, Mowla SJ, Ziaee SA, et al. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 2008; 26 : 3068–74. [Google Scholar]
  19. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18 : 399–404. [Google Scholar]
  20. Pera MF, Cooper S, Mills J, Parrington JM. Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation 1989; 42 : 10–23. [Google Scholar]
  21. Scholer HR, Hatzopoulos AK, Balling R, et al. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 1989; 8 : 2543–50. [Google Scholar]
  22. Yeom YI, Fuhrmann G, Ovitt CE, et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 1996; 122 : 881–94. [Google Scholar]
  23. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95 : 379–91. [Google Scholar]
  24. Cole MF, Johnstone SE, Newman JJ, et al. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 2008; 22 : 746–55. [Google Scholar]
  25. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122 : 947–56. [Google Scholar]
  26. Creyghton MP, Markoulaki S, Levine SS, et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 2008; 135 : 649–61. [Google Scholar]
  27. Squazzo SL, O’Geen H, Komashko VM, et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 2006; 16 : 890–900. [Google Scholar]
  28. Ku M, Koche RP, Rheinbay E, et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 2008; 4 : e1000242. [Google Scholar]
  29. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1 : 55–70. [Google Scholar]
  30. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448 : 318–24. [Google Scholar]
  31. Okamoto I, Otte AP, Allis CD, et al. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 2004; 303 : 644–9. [Google Scholar]
  32. Donohoe ME, Silva SS, Pinter SF, et al. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 2009; 460 : 128–32. [Google Scholar]
  33. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24 : 372–6. [Google Scholar]
  34. Reim G, Mizoguchi T, Stainier DY, et al. The POU domain protein spg (pou2/Oct4) is essential for endoderm formation in cooperation with the HMG domain protein casanova. Dev Cell 2004; 6 : 91–101. [Google Scholar]
  35. Shimozaki K, Nakashima K, Niwa H, Taga T. Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development 2003; 130 : 2505–12. [Google Scholar]
  36. Camara-Clayette V, Le Pesteur F, Vainchenker W, Sainteny F. Quantitative Oct4 overproduction in mouse embryonic stem cells results in prolonged mesoderm commitment during hematopoietic differentiation in vitro. Stem Cells 2006; 24 : 1937–45. [Google Scholar]
  37. Zeineddine D, Papadimou E, Chebli K, et al. Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev Cell 2006; 11 : 535–46. [Google Scholar]
  38. Loebel DA, Watson CM, De Young RA, Tam PP. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003; 264 : 1–14. [Google Scholar]
  39. Tomescot A, Leschik J, Bellamy V, et al. Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats. Stem Cells 2007; 25 : 2200–05. [Google Scholar]
  40. Tam PPL, Schoenwolf G. Cardiac fate map: lineage, allocation, morphogenetic movement and cell commitment. In : Harvey RP, Rosenthal N, eds. Heart Development. New York: Saunders, 1999 : 3–18. [Google Scholar]
  41. Stefanovic S, Abboud N, Desilets S, et al. Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J Cell Biol 2009; 186 : 665–73. [Google Scholar]
  42. Daheron L, Opitz SL, Zaehres H, et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 2004; 22 : 770–8. [Google Scholar]
  43. Stefanovic S, Pucéat M. Oct-3/4: not just a gatekeeper of pluripotency for embryonic stem cell, a cell fate instructor through a gene dosage effect. Cell Cycle 2007; 6 : 8–10. [Google Scholar]
  44. Place RF, Li LC, Pookot D, et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008; 105 : 1608–13. [Google Scholar]
  45. Liu Y, Asakura M, Inoue H, et al. Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc Natl Acad Sci USA 2007; 104 : 3859–64. [Google Scholar]
  46. Pu WT, Ishiwata T, Juraszek AL, et al. GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol 2004; 275 : 235–44. [Google Scholar]
  47. Mori AD, Zhu Y, Vahora I, et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol 2006; 297 : 566–86. [Google Scholar]
  48. Jing H, Vakoc CR, Ying L, et al. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol Cell 2008; 29 : 232–42. [Google Scholar]
  49. Ray S, Dutta D, Rumi MA, et al. Context-dependent function of regulatory elements and a switch in chromatin occupancy between GATA3 and GATA2 regulate Gata2 transcription during trophoblast differentiation. J Biol Chem 2009; 284 : 4978–88. [Google Scholar]
  50. Navarro P. X inactivation : a direct link with the pluripotent state. Med Sci (Paris) 2009; 25 : 888–90. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.