Free Access
Med Sci (Paris)
Volume 25, Number 11, Novembre 2009
Page(s) 977 - 981
Section Repères
Published online 15 November 2009
  1. Woese CR, Magrum LJ, Fox GE. Archaebacteria. J Mol Evol 1978; 11 : 245–51. [Google Scholar]
  2. Makowski I, Frolow F, Saper MA, et al. Single crystals of large ribosomal particles from Halobacterium marismortui diffract to 6 Å. J Mol Biol 1987; 193 : 819–22. [Google Scholar]
  3. Glotz C, Mussig J, Gewitz HS, et al. Three-dimensional crystals of ribosomes and their subunits from eu- and archaebacteria. Biochem Int 1987; 15 : 953–60. [Google Scholar]
  4. Yonath A, Glotz C, Gewitz HS, et al. Characterization of crystals of small ribosomal subunits. J Mol Biol 1988; 203 : 831–4. [Google Scholar]
  5. Von Bohlen K, Makowski I, Hansen HA, et al. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J Mol Biol 1991; 222 : 11–5. [Google Scholar]
  6. Tocilj A, Schlunzen F, Janell D, et al. The small ribosomal subunit from Thermus thermophilus at 4,5 Å resolution: pattern fittings and the identification of a functional site. Proc Natl Acad Sci USA 1999; 96 : 14252–7. [Google Scholar]
  7. Harms J, Schluenzen F, Zarivach R, et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 2001; 107 : 679–88. [Google Scholar]
  8. Capel MS, Engelman DM, Freeborn BR, et al. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 1987; 238 : 1403–6. [Google Scholar]
  9. Ban N, Freeborn B, Nissen P, et al. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 1998; 93 : 1105–15. [Google Scholar]
  10. Ban N, Nissen P, Hansen J, et al. Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature 1999; 400 : 841–7. [Google Scholar]
  11. Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 2000; 289 : 905–20. [Google Scholar]
  12. Ramakrishnan V, Capel M, Kjeldgaard M, et al. Positions of proteins S14, S18 and S20 in the 30S ribosomal subunit of Escherichia coli. J Mol Biol 1984; 174 : 265–84. [Google Scholar]
  13. Ramakrishnan V, White SW. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem Sci 1998; 23: 208–12. [Google Scholar]
  14. Clemons WMJ, May JL, Wimberly BT, et al. Structure of a bacterial 30S ribosomal subunit at 5,5 Å resolution. Nature 1999; 400 : 833–40. [Google Scholar]
  15. Wimberly BT, Brodersen DE, Clemons WMJ, et al. Structure of the 30S ribosomal subunit. Nature 2000; 407 : 327–39. [Google Scholar]
  16. Yusupov MM, Tischenko SV, Trakhanov SD, et al. A new crystallin form of 30S ribosomal subunits from Thermus thermophilus. FEBS Lett 1988; 238 : 113–5. [Google Scholar]
  17. Yusupov MM, Garber MB, Vasiliev VD, Spirin AS. Thermus thermophilus ribosomes for crystallographic studies. Biochimie 1991; 73 : 887–97. [Google Scholar]
  18. Yusupov MM, Trakhanov SD, Barinin VV, et al. Crystallization of 30S subunits of ribosome from Thermus thermophilus. Dokl Acad Nauk (USSR) 1987; 292 : 1271–4. [Google Scholar]
  19. Trakhanov SD, Yusupov MM, Agalarov SC, et al. Crystallization of 70S ribosome and 30S ribosomal subunits from Thermus thermophilus. FEBS Lett 1987; 220 : 319–22. [Google Scholar]
  20. Trakhanov S, Yusupov M, Shirokov V, et al. Preliminary X-ray investigation of 70 S ribosome crystals from Thermus thermophilus. J Mol Biol 1989; 209 : 327–8. [Google Scholar]
  21. Yusupova G, Yusupov M, Spirin A, et al. Formation and crystallization of Thermus thermophilus 70S ribosome/tRNA complexes. FEBS Lett 1991; 290 : 69–72. [Google Scholar]
  22. Powers T, Daubresse G, Noller HF. Dynamics of in vitro assembly of 16 S rRNA into 30S ribosomal subunits. J Mol Biol 1993; 232 : 362–74. [Google Scholar]
  23. Moazed D, Noller HF. Intermediate states in the movement of transfer RNA in the ribosome. Nature 1989; 342 : 142–8. [Google Scholar]
  24. Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987; 327 : 389–94. [Google Scholar]
  25. Noller HF, Hoffarth V, Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 1992; 256 : 1416–9. [Google Scholar]
  26. Cate JH, Gooding AR, Podell E, et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 1996; 273 : 1678–85. [Google Scholar]
  27. Cate JH, Yusupov MM, Yusupova GZ, et al. X-ray crystal structures of 70S ribosome functional complexes. Science 1999; 285 : 2095–104. [Google Scholar]
  28. Yusupov MM, Yusupova GZ, Baucom A, et al. Crystal structure of the ribosome at 5,5 Å resolution. Science 2001; 292 : 883–96. [Google Scholar]
  29. Yusupova GZ, Yusupov MM, Cate JH, Noller HF. The path of messenger RNA through the ribosome. Cell 2001; 106 : 233–41. [Google Scholar]
  30. Noller HF. The driving force for molecular evolution of translation. RNA 2004; 10 : 1833–7. [Google Scholar]
  31. Davidovich C, Belousoff M, Bashan A, Yonath A. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 2009 (sous presse). [Google Scholar]
  32. Frank J, Zhu J, Penczek P, et al. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 1995; 376 : 441–4. [Google Scholar]
  33. Agrawal RK, Penczek P, Grassucci RA, et al. Direct visualization of A-, P, and E-site transfer RNAs in the Escherichia coli ribosome. Science 1996; 271 : 1000–2. [Google Scholar]
  34. Stark H, Mueller F, Orlova EV, et al. The 70S Escherichia coli ribosome at 23 Å resolution: fitting the ribosomal RNA. Structure 1995; 3 : 815–21. [Google Scholar]
  35. Stark H, Orlova EV, Rinke-Appel J, et al. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 1997; 88 : 19–28. [Google Scholar]
  36. Yusupova G, Jenner L, Rees B, et al. Structural basis for messenger RNA movement on the ribosome. Nature 2006; 444 : 391–4. [Google Scholar]
  37. Jenner L, Romby P, Rees B, et al. Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 2005; 308 : 120–3. [Google Scholar]
  38. Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 2006; 126 : 1065–77. [Google Scholar]
  39. Selmer M, Dunham CM, Murphy FV, et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 2006; 313 : 1935–42. [Google Scholar]
  40. Blaha G, Stanley RE, Steitz TA. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 2009; 325 : 966–70. [Google Scholar]
  41. Berk V, Zhang W, Pai RD, Cate JH. Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci USA 2006; 103 : 15830–4. [Google Scholar]
  42. Allen GS, Zavialov A, Gursky R, et al. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 2005; 121 : 703–12. [Google Scholar]
  43. Myasnikov AG, Marzi S, Simonetti A, et al. Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat Struct Mol Biol 2005; 12 : 1145–9. [Google Scholar]
  44. Villa E, Sengupta J, Trabuco LG, et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci USA 2009; 106 : 1063–8. [Google Scholar]
  45. Simonetti A, Marzi S, Myasnikov AG, et al. Structure of the 30S translation initiation complex. Nature 2008; 455 : 416–20. [Google Scholar]
  46. Halic M, Becker T, Pool MR, et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 2004; 427 : 808–14. [Google Scholar]
  47. Kaur S, Gillet R, Li W, et al. Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc Natl Acad Sci USA 2006; 103 : 16484–9. [Google Scholar]
  48. Marzi S, Myasnikov AG, Serganov A, et al. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 2007; 130 : 1019–31. [Google Scholar]
  49. Noller HF. Ribosomes. Drugs and the RNA world. Nature 1991; 353 : 302–3. [Google Scholar]
  50. Sohmen D, Harms JM, Schlunzen F, Wilson DN. Enhanced SnapShot: Antibiotic inhibition of protein synthesis II. Cell 2009; 139 : 212e1. [Google Scholar]
  51. Wimberly BT. The use of ribosomal crystal structures in antibiotic drug design. Curr Opin Investig Drugs 2009; 10 : 750–65. [Google Scholar]
  52. Francois B, Szychowski J, Adhikari SS, et al. Antibacterial aminoglycosides with a modified mode of binding to the ribosomal-RNA decoding site. Angew Chem Int Ed Engl 2004; 43 : 6735–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.