Free Access
Issue
Med Sci (Paris)
Volume 25, Mars 2009
Évaluation des risques et perspectives thérapeutiques en oncologie colorectale
Page(s) 13 - 21
Section La place du ciblage thérapeutique
DOI https://doi.org/10.1051/medsci/2009251s13
Published online 15 January 2009
  1. Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004; 350 : 2343–51. [Google Scholar]
  2. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan study group. N Engl J Med 2000; 343 : 905–14. [Google Scholar]
  3. Douillard JY, Cunningham D, Roth AD, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 2000; 355 : 1041–7. [Google Scholar]
  4. De Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 2000; 18 : 2938–47. [Google Scholar]
  5. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 2004; 22 : 23–30. [Google Scholar]
  6. Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004; 22 : 229–37. [Google Scholar]
  7. Grothey A, Sargent D, Goldberg RM, Schmoll HJ. Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 2004; 22 : 1209–14. [Google Scholar]
  8. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350 : 2335–42. [Google Scholar]
  9. Giantonio BJ. Bevacizumab in the treatment of metastatic colorectal cancer (mCRC) in second- and third-line settings. Semin Oncol 2006; 33 (suppl 10) : S15–8. [Google Scholar]
  10. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61 : 203–12. [Google Scholar]
  11. Grandis JR, Sok JC. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 2004; 102 : 37–46. [Google Scholar]
  12. Spano JP, Lagorce C, Atlan D, et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 2005; 16 : 102–8. [Google Scholar]
  13. Lee JC, Wang ST, Chow NH, Yang HB. Investigation of the prognostic value of coexpressed erbB family members for the survival of colorectal cancer patients after curative surgery. Eur J Cancer 2002; 38 : 1065–71. [Google Scholar]
  14. McKay JA, Murray LJ, Curran S, et al. Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases. Eur J Cancer 2002; 38 : 2258–64. [Google Scholar]
  15. Kopp R, Rothbauer E, Mueller E, et al. Reduced survival of rectal cancer patients with increased tumor epidermal growth factor receptor levels. Dis Colon Rectum 2003; 46 : 1391–9. [Google Scholar]
  16. Galizia G, Lieto E, Ferraraccio F, et al. Prognostic significance of epidermal growth factor receptor expression in colon cancer patients undergoing curative surgery. Ann Surg Oncol 2006; 13 : 823–35. [Google Scholar]
  17. Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 2001; 8 : 83–96. [Google Scholar]
  18. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350 : 2129–39. [Google Scholar]
  19. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304 : 1497–500. [Google Scholar]
  20. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from never smokers and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101 : 13306–11. [Google Scholar]
  21. Barber TD, Vogelstein B, Kinzler KW, Velculescu VE. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 2004; 351 : 28–83. [Google Scholar]
  22. Sato JD, Kawamoto T, Le AD, et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med 1983; 1 : 511–29. [Google Scholar]
  23. Kawamoto T, Sato JD, Le A, et al. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci USA 1983; 80 : 1337–41. [Google Scholar]
  24. Aivado M, Spentzos D, Alterovitz G, et al. Optimization and evaluation of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) with reversed-phase protein arrays for protein profiling. Clin Chem Lab Med 2005; 43 : 133–40. [Google Scholar]
  25. Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 1994; 269 : 27595–602. [Google Scholar]
  26. Peng D, Fan Z, Lu Y, et al. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res 1996; 56 : 3666–9. [Google Scholar]
  27. Wu X, Fan Z, Masui H, et al. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 1995; 95 : 1897–905. [Google Scholar]
  28. Liu B, Fang M, Schmidt M, et al. Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity. Br J Cancer 2000; 82 : 1991–9. [Google Scholar]
  29. Vincenzi B, Santini D, Russo A, et al. Angiogenesis modifications related with cetuximab plus irinotecan as anticancer treatment in advanced colorectal cancer patients. Ann Oncol 2006; 17 : 835–41. [Google Scholar]
  30. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999; 5 : 257–64. [Google Scholar]
  31. O-Charoenrat P, Modjtahedi H, Rhys-Evans P, et al. Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer Res 2000; 60 : 1121–8. [Google Scholar]
  32. Aboud-Pirak E, Hurwitz E, Pirak ME, et al. Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J Natl Cancer Inst 1988; 80 : 1605–11. [Google Scholar]
  33. Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 1993; 85 : 1327–33. [Google Scholar]
  34. Fan Z, Baselga J, Masui H, Mendelsohn J. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 1993; 53 : 4637–42. [Google Scholar]
  35. Prewett MC, Hooper AT, Bassi R, et al. Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin Cancer Res 2002; 8 : 994–1003. [Google Scholar]
  36. Naramura M, Gillies SD, Mendelsohn J, et al. Therapeutic potential of chimeric and murine anti-(epidermal growth factor receptor) antibodies in a metastasis model for human melanoma. Cancer Immunol Immunother 1993; 37 : 343–9. [Google Scholar]
  37. Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 2000; 18 : 904–14. [Google Scholar]
  38. Shin DM, Donato NJ, Perez-Soler R, et al. Epidermal growth factor receptor-targeted therapy with C225 and cisplatin in patients with head and neck cancer. Clin Cancer Res 2001; 7 : 1204–13. [Google Scholar]
  39. Saltz LB, Meropol NJ, Loehrer PJ Sr, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22 : 1201–8. [Google Scholar]
  40. Lenz HJ, Van Cutsem E, Khambata-Ford S, et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 2006; 24 : 4914–21. [Google Scholar]
  41. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351 : 337–45. [Google Scholar]
  42. Souglakos J, Kalykaki A, Vamvakas L, et al. Phase II trial of capecitabine and oxaliplatin (CAPOX) plus cetuximab in patients with metastatic colorectal cancer who progressed after oxaliplatin-based chemotherapy. Ann Oncol 2006; 18 : 305–10. [Google Scholar]
  43. Folprecht G, Lutz MP, Schoffski P, et al. Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma. Ann Oncol 2006; 17 : 450–6. [Google Scholar]
  44. Van Cutsem E. Challenges in the use of epidermal growth factor receptor inhibitors in colorectal cancer. Oncologist 2006; 11 : 1010–7. [Google Scholar]
  45. Daneshmand M, Parolin DAE, Hirte HW, et al. A pharmacodynamic study of the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in metastatic colorectal cancer patients. Clin Cancer Res 2003; 9 : 2457–64. [Google Scholar]
  46. Cho CD, Fisher GA, Halsey J, Sikic BI. Phase I study of gefitinib, oxaliplatin, 5-fluorouracil, and leucovorin (IFOX) in patients with advanced solid malignancies. Invest New Drugs 2006; 24 : 117–23. [Google Scholar]
  47. Kindler HL, Friberg G, Skoog L, et al. Phase I/II trial of gefitinib and oxaliplatin in patients with advanced colorectal cancer. Am J Clin Oncol 2005; 28 : 340–4. [Google Scholar]
  48. Rothenberg ML, LaFleur B, Levy DE, et al. Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J Clin Oncol 2005; 23 : 9265–74. [Google Scholar]
  49. Czito BG, Willett CG, Bendell JC, et al. Increased toxicity with gefitinib, capecitabine, and radiation therapy in pancreatic and rectal cancer: phase I trial results. J Clin Oncol 2006; 24 : 656–62. [Google Scholar]
  50. Wolpin BM, Clark JW, Meyerhardt JA, et al. Phase I study of gefitinib plus FOLFIRI in previously untreated patients with metastatic colorectal cancer. Clin Colorectal Cancer 2006; 6 : 208–13. [Google Scholar]
  51. Messersmith WA, Laheru DA, Senzer NN, et al. Phase I trial of irinotecan, infusional 5-fluorouracil, and leucovorin (FOLFIRI) with erlotinib (OSI-774): early termination due to increased toxicities. Clin Cancer Res 2004; 10 : 6522–7. [Google Scholar]
  52. Townsley CA, Major P, Siu LL, et al. Phase II study of erlotinib (OSI-774) in patients with metastatic colorectal cancer. Br J Cancer 2006; 94 : 1136–43. [Google Scholar]
  53. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 2005; 23 : 1803–10. [Google Scholar]
  54. Hebbar MA, Wacrenier AB, Desauw CA, et al. Lack of usefulness of epidermal growth factor receptor expression determination for cetuximab therapy in patients with colorectal cancer. Anticancer Drugs 2006; 17 : 855–7. [Google Scholar]
  55. Sartore-Bianchi A, Moroni M, Veronese S, et al. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol 2007; 25 : 3238–45. [Google Scholar]
  56. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal Growth Factor Receptor Gene and Protein and Gefitinib Sensitivity in Non-Small-Cell Lung Cancer. J. Natl. Cancer Inst 2005; 97 : 643–55. [Google Scholar]
  57. Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007; 25 : 3230–7. [Google Scholar]
  58. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006; 66 : 3992–5. [Google Scholar]
  59. Di Fiore F, Blanchard F, Charbonnier F, et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br J Cancer 2007; 96 : 1166–9. [Google Scholar]
  60. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 2007; 67 : 2643–8. [Google Scholar]
  61. Van Custem E, Lang I, D’Haens G, et al. KRAS status and efficacy in fisrt-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: the CRYSTAL experience. ASCO Annual Meeting Proceedings 2008; vol. 26, n° 15S, Part I of II (abstract 2) : 5S. [Google Scholar]
  62. Bokemeyer C, Bondarenko I, Hartmann JT, et al. KRAS status and efficacy of fisrt-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: the OPUS experience. ASCO Annual Meeting Proceedings 2008; vol. 26, n° 15S, Part I of II (abstract 4000) : 178s. [Google Scholar]
  63. Tejpar S, Peeters M, Humblet Y, et al. Relastionship of efficacy with KRAS status (wild type versus mutant) in patients with irinotecan-refractory metastatic colorectal cancer (mCRC), treated with irinotecan (q2w) and escalating doses of cetuximab (q1w): the EVEREST experience (preliminary data). ASCO Annual Meeting Proceedings 2008; vol. 26, n°15S, Part I of II (abstract 4001) : 178s. [Google Scholar]
  64. Saltz LB, Lenz HJ, Kindler HL, et al. Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol 2007; 25 : 4557–61. [Google Scholar]
  65. Hecht JR, Mitchell EP, Chidiac T, et al. Interim results from PACCE: Irinotecan(Iri/bevacizumab (bev) +/− panitumumab (pmab) as first- line treatment (tx) for metastatic colorectal cancer (mCRC). Proceedings Gastrointestinal Cancers Symposium 2008; abstract 279 : 208. [Google Scholar]
  66. Punt CJ, Tol J, Rodenburg A, et al. Randomized phase III study of capecitabine, oxaliplatin and bevacizumab with or without cetuximab in advanced colorectal cancer (ACC), the CAIRO2 study of the Dutch colorectal cancer group (DCCG). ASCO Annual Meeting Proceedings 2008; vol. 26, n° 15S, Part I of II (abstract LBA4011) : 180s. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.