Free Access
Med Sci (Paris)
Volume 24, Number 12, Décembre 2008
Page(s) 1065 - 1070
Section M/S revues
Published online 15 December 2008
  1. Ernst P, Hahm K, Smale ST. Both LyF-1 and an Ets protein interact with a critical promoter element in the murine terminal transferase gene. Mol Cell Biol 1993; 13 : 2982–92. [Google Scholar]
  2. Georgopoulos K, Moore DD, Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 1992; 258 : 808–12. [Google Scholar]
  3. Haire RN, Miracle AL, Rast JP, Litman GW. Members of the Ikaros gene family are present in early representative vertebrates. J Immunol 2000; 165 : 306–12. [Google Scholar]
  4. Molnar A, Wu P, Largespada DA, et al. The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA binding proteins, highly conserved in human and mouse. J Immunol 1996; 156 : 585–92. [Google Scholar]
  5. Yu S, Asa SL, Ezzat S. Fibroblast growth factor receptor 4 is a target for the zinc-finger transcription factor Ikaros in the pituitary. Mol Endocrinol 2002; 16 : 1069–78. [Google Scholar]
  6. Georgopoulos K, Winandy S, Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol 1997; 15 : 155–76. [Google Scholar]
  7. Kirstetter P, Thomas M, Dierich A, et al. Ikaros is critical for B cell differentiation and function. Eur J Immunol 2002; 32 : 720–30. [Google Scholar]
  8. Klug CA, Morrison SJ, Masek M, et al. Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci USA 1998; 95 : 657–62. [Google Scholar]
  9. Nakayama H, Ishimaru F, Katayama Y, et al. Ikaros expression in human hematopoietic lineages. Exp Hematol 2000; 28 : 1232–8. [Google Scholar]
  10. Nietfeld W, Meyerhans A. Cloning and sequencing of hIk-1, a cDNA encoding a human homologue of mouse Ikaros/LyF-1. Immunol Lett 1996; 49 : 139–41. [Google Scholar]
  11. Hahm K, Cobb BS, McCarty AS, et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev 1998; 12 : 782–96. [Google Scholar]
  12. Kelley CM, Ikeda T, Koipally J, et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol 1998; 8 : 508–15. [Google Scholar]
  13. Morgan B, Sun L, Avitahl N, et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J 1997; 16 : 2004–13. [Google Scholar]
  14. Perdomo J, Holmes M, Chong B, Crossley M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem 2000; 275 : 38347–54. [Google Scholar]
  15. Hahm K, Ernst P, Lo K, et al. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol 1994; 14 : 7111–23. [Google Scholar]
  16. Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 1994; 14 : 8292–303. [Google Scholar]
  17. Sun L, Liu A, Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 1996; 15 : 5358–69. [Google Scholar]
  18. Payne KJ, Nicolas JH, Zhu JY, et al. Cutting edge: predominant expression of a novel Ikaros isoform in normal human hemopoiesis. J Immunol 2001; 167 : 1867–70. [Google Scholar]
  19. Gomez-del Arco P, Maki K, Georgopoulos K. Phosphorylation controls Ikaros’s ability to negatively regulate the G(1)-S transition. Mol Cell Biol 2004; 24 : 2797–807. [Google Scholar]
  20. Gomez-del Arco P, Koipally J, Georgopoulos K. Ikaros SUMOylation: switching out of repression. Mol Cell Biol 2005; 25 : 2688–97. [Google Scholar]
  21. Harker N, Naito T, Cortes M, et al. The CD8alpha gene locus is regulated by the Ikaros family of proteins. Mol Cell 2002; 10 : 1403–15. [Google Scholar]
  22. Sabbattini P, Lundgren M, Georgiou A, et al. Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J 2001; 20 : 2812–22. [Google Scholar]
  23. Cobb BS, Morales-Alcelay S, Kleiger G, et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 2000; 14 : 2146–60. [Google Scholar]
  24. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2002; 2 : 162–74. [Google Scholar]
  25. Terranova R, Core N, Djabali M. Ikaros, chromatine et contrôle du développement lymphocytaire. Med Sci (Paris) 2000; 16 : 685–88. [Google Scholar]
  26. Trinh LA, Ferrini R, Cobb BS, et al. Down-regulation of TDT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 2001; 15 : 1817–32. [Google Scholar]
  27. Georgopoulos K, Bigby M, Wang JH, et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79 : 143–56. [Google Scholar]
  28. Papathanasiou P, Perkins AC, Cobb BS, et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 2003; 19 : 131–44. [Google Scholar]
  29. Wang JH, Nichogiannopoulou A, Wu L, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 1996; 5 : 537–49. [Google Scholar]
  30. Dijon M, Bardin F, Murati A, et al. The role of Ikaros in human erythroid differentiation. Blood 2008; 111 : 1138–46. [Google Scholar]
  31. Galy A, Christopherson I, Ferlazzo G, et al. Distinct signals control the hematopoiesis of lymphoid-related dendritic cells. Blood 2000; 95 : 128–37. [Google Scholar]
  32. Movassagh M, Laderach D, Galy A. Proteins of the Ikaros family control dendritic cell maturation required to induce optimal Th1 T cell differentiation. Int Immunol 2004; 16 : 867–75. [Google Scholar]
  33. Tonnelle C, Bardin F, Maroc C, et al. Forced expression of the Ikaros 6 isoform in human placental blood CD34+ cells impairs their ability to differentiate toward the B-lymphoid lineage. Blood 2001; 98 : 2673–80. [Google Scholar]
  34. Nichogiannopoulou A, Trevisan M, Neben S, et al. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med 1999; 190 : 1201–14. [Google Scholar]
  35. Boggs SS, Trevisan M, Patrene K, Geogopoulos K. Lack of natural killer cell precursors in fetal liver of Ikaros knockout mutant mice. Nat Immunol 1998; 16 : 137–45. [Google Scholar]
  36. Allman D, Dalod M, Asselin-Paturel C, et al. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 2006; 108 : 4025–34. [Google Scholar]
  37. Wu L, Nichogiannopoulou A, Shortman K, Georgopoulos K. Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 1997; 7 : 483–92. [Google Scholar]
  38. Dumortier A, Kirstetter P, Kastner P, Chan S. Ikaros regulates neutrophil differentiation. Blood 2003; 101 : 2219–26. [Google Scholar]
  39. Lopez RA, Schoetz S, DeAngelis K, et al. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci USA 2002; 99 : 602–7. [Google Scholar]
  40. O’Neill DW, Schoetz SS, Lopez RA, et al. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol Cell Biol 2000; 20 : 7572–82. [Google Scholar]
  41. Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol 2006; 7 : 382–91. [Google Scholar]
  42. Vandekerckhove J, Ribeil JA, Zermati Y, et al. Hsp70, l’ange gardien de GATA-1 lors de la différenciation des globules rouges. Med Sci (Paris) 2008; 24 : 37–40. [Google Scholar]
  43. Bank A. Regulation of human fetal hemoglobin: new players, new complexities. Blood 2006; 107 : 435–43. [Google Scholar]
  44. Giarratana MC, Douay L. Le globule rouge de culture : une nouvelle étape dans l’ingénierie cellulaire. Med Sci (Paris) 2005; 21 : 231–2. [Google Scholar]
  45. Giarratana MC, Kobari L, Lapillonne H, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 2005; 23 : 69–74. [Google Scholar]
  46. Frontelo P, Manwani D, Galdass M, et al. Novel role for EKLF in megakaryocyte lineage commitment. Blood 2007; 110 : 3871–80. [Google Scholar]
  47. Wijgerde M, Gribnau J, Trimborn T, et al. The role of EKLF in human beta-globin gene competition. Genes Dev 1996; 10 : 2894–902. [Google Scholar]
  48. Cavazzana-Calvo M, Six E, André-Schmutz I, Coulombel L. Hématopoïèse humaine : des cellules CD34 aux lymphocytes T. Med Sci (Paris) 2007; 23 : 151–9. [Google Scholar]
  49. Kastner P, Chan S. La voie Notch au centre du mécanisme de leucémogenèse dans un modèle murin de leucémies T. Med Sci (Paris) 2006; 22 : 708–10. [Google Scholar]
  50. Godin I, Cumano A. Les cellules souches hématopoïétiques : une double origine embryonnaire ? Med Sci (Paris) 2007; 23 : 681–4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.