Free Access
Med Sci (Paris)
Volume 24, Number 12, Décembre 2008
Page(s) 1043 - 1048
Section M/S revues
Published online 15 December 2008
  1. Johnson MH, McConnell JM. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol 2004; 15 : 583–97. [Google Scholar]
  2. Dard N, Breuer M, Maro B, et al. Morphogenesis of the mammalian blastocyst. Mol Cell Endocrinol 2008; 282 : 70–7. [Google Scholar]
  3. Yamanaka Y, Ralston A, Stephenson RO, et al. Cell and molecular regulation of the mouse blastocyst. Dev Dyn 2006; 235 : 2301–14. [Google Scholar]
  4. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292 : 154–6. [Google Scholar]
  5. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78 : 7634–8. [Google Scholar]
  6. Tanaka S, Kunath T, Hadjantonakis AK, et al. Promotion of trophoblast stem cell proliferation by FGF4. Science 1998; 282 : 2072–5. [Google Scholar]
  7. Kunath T, Arnaud D, Uy GD, et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 2005; 132 : 1649–61. [Google Scholar]
  8. Cohen-Tannoudji M. Prix Nobel de médecine 2007 à Mario Capecchi, Martin Evans et Oliver Smithies. Des souris mutantes à façon. Med Sci (Paris) 2007; 23 : 1159–61. [Google Scholar]
  9. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282 : 1145–7. [Google Scholar]
  10. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005; 19 : 1129–55. [Google Scholar]
  11. Peschanski M. Cellules souches : l’heure venue du changement d’Échelle. Med Sci (Paris) 2008; 24 : 335–8. [Google Scholar]
  12. Plusa B, Frankenberg S, Chalmers A, et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 2005; 118 : 505–15. [Google Scholar]
  13. Strumpf D, Mao CA, Yamanaka Y, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005; 132 : 2093–102. [Google Scholar]
  14. Ralston A, Rossant J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 2008; 313 : 614–29. [Google Scholar]
  15. Dietrich JE, Hiiragi T. Stochastic patterning in the mouse pre-implantation embryo. Development 2007; 134 : 4219–31. [Google Scholar]
  16. Niwa H, Toyooka Y, Shimosato D, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005; 123 : 917–29. [Google Scholar]
  17. Yagi R, Kohn MJ, Karavanova I, et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 2007; 134 : 3827–36. [Google Scholar]
  18. Nishioka N, Yamamoto S, Kiyonari H, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 2008; 125 : 270–83. [Google Scholar]
  19. Elling U, Klasen C, Eisenberger T, et al. Murine inner cell mass-derived lineages depend on Sall4 function. Proc Natl Acad Sci USA 2006; 103 : 16319–24. [Google Scholar]
  20. Zhang J, Tam WL, Tong GQ, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 2006; 8 : 1114–23. [Google Scholar]
  21. Domingos PM, Mlodzik M, Mendes CS, et al. Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye. Development 2004; 131 : 5695–702. [Google Scholar]
  22. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113 : 643–55. [Google Scholar]
  23. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113 : 631–42. [Google Scholar]
  24. Koutsourakis M, Langeveld A, Patient R, et al. The transcription factor GATA6 is essential for early extraembryonic development. Development 1999; 126 : 723–32. [Google Scholar]
  25. Morrisey EE, Tang Z, Sigrist K, et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 1998; 12 : 3579–90. [Google Scholar]
  26. Chazaud C, Yamanaka Y, Pawson T, et al. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 2006; 10 : 615–24. [Google Scholar]
  27. Kurimoto K, Yabuta Y, Ohinata Y, et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 2006; 34 : e42. [Google Scholar]
  28. Fujikura J, Yamato E, Yonemura S, et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 2002; 16 : 784–9. [Google Scholar]
  29. Shimosato D, Shiki M, Niwa H. Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC Dev Biol 2007; 7 : 80. [Google Scholar]
  30. Chambers I, Silva J, Colby D, et al. Nanog safeguards pluripotency and mediates germline development. Nature 2007; 450 : 1230–4. [Google Scholar]
  31. Feldman B, Poueymirou W, Papaioannou VE, et al. Requirement of FGF-4 for postimplantation mouse development. Science 1995; 267 : 246–9. [Google Scholar]
  32. Arman E, Haffner-Krausz R, Chen Y, et al. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci USA 1998; 95 : 5082–7. [Google Scholar]
  33. Gerbe F, Cox B, Rossant J, et al. Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev Biol 2008; 313 : 594–602. [Google Scholar]
  34. Futaki S, Hayashi Y, Emoto T, et al. Sox7 plays crucial roles in parietal endoderm differentiation in F9 embryonal carcinoma cells through regulating Gata-4 and Gata-6 expression. Mol Cell Biol 2004; 24 : 10492–503. [Google Scholar]
  35. Shimoda M, Kanai-Azuma M, Hara K, et al. Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J Cell Sci 2007; 120 : 3859–9. [Google Scholar]
  36. Gu P, Goodwin B, Chung AC, et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol 2005; 25 : 3492–505. [Google Scholar]
  37. Van den Boom V, Kooistra SM, Boesjes M, et al. UTF1 is a chromatin-associated protein involved in ES cell differentiation. J Cell Biol 2007; 178 : 913–24. [Google Scholar]
  38. Cormier S, Le Bras S, Souilhol C, et al. The murine ortholog of notchless, a direct regulator of the notch pathway in Drosophila melanogaster, is essential for survival of inner cell mass cells. Mol Cell Biol 2006; 26 : 3541–9. [Google Scholar]
  39. Hanna LA, Foreman RK, Tarasenko IA, et al. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev 2002; 16 : 2650–61. [Google Scholar]
  40. Chazaud C, Rossant J. Disruption of early proximodistal patterning and AVE formation in Apc mutants. Development 2006; 133 : 3379–87. [Google Scholar]
  41. Gao F, Shi HY, Daughty C, et al. Maspin plays an essential role in early embryonic development. Development 2004; 131 : 1479–89. [Google Scholar]
  42. Yang DH, Smith ER, Roland IH, et al. Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol 2002; 251 : 27–44. [Google Scholar]
  43. Yang DH, Cai KQ, Roland IH, et al. Disabled-2 is an epithelial surface positioning gene. J Biol Chem 2007; 282 : 13114–22. [Google Scholar]
  44. Rula ME, Cai KQ, Moore R, et al. Cell autonomous sorting and surface positioning in the formation of primitive endoderm in embryoid bodies. Genesis 2007; 45 : 327–38. [Google Scholar]
  45. Smyth N, Vatansever HS, Murray P, et al. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 1999; 144 : 151–60. [Google Scholar]
  46. Assemat E, Vinot S, Gofflot F, et al. Expression and role of cubilin in the internalization of nutrients during the peri-implantation development of the rodent embryo. Biol Reprod 2005; 72 : 1079–86. [Google Scholar]
  47. Maurer ME, Cooper JA. Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein. J Cell Sci 2005; 118 : 5345–55. [Google Scholar]
  48. Tam PP, Loebel DA. Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 2007; 8 : 368–81. [Google Scholar]
  49. Prodon F, Prulière G, Chenevert J, Sardet C. Établissement et expression des axes embryonnaires : comparaisons entre différents organismes modèles. Med Sci (Paris) 2004; 20 : 526–38. [Google Scholar]
  50. Collignon J, Perea-Gomez A. Régulation épigénétique de la pluripotence chez l’embryon de souris. Med Sci (Paris) 2007; 23 : 679–81. [Google Scholar]
  51. Fluckiger AC, Dehay C, Savatier P. Cellules souches embryonnaires et thérapies cellulaires du système nerveux. Med Sci (Paris) 2003; 19 : 699–708. [Google Scholar]
  52. Henckel A, Feil R. Asymétrie des génomes parentaux : implications en pathologie. Med Sci (Paris) 2008 24 : 747–52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.