Free Access
Issue
Med Sci (Paris)
Volume 24, Number 8-9, Août-Septembre 2008
Page(s) 747 - 752
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082489747
Published online 15 August 2008
  1. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984; 37 : 179–83. [Google Scholar]
  2. Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308 : 548–50. [Google Scholar]
  3. Thomson, JASolter D. The developmental fate of androgenetic, parthenogenetic, and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev 1988; 10 : 1344–51. [Google Scholar]
  4. Gabory A, Dandolo L. Épigénétique et développement : l’empreinte parentale. Med. Sci. (Paris) 2005; 21 : 390–5 [Google Scholar]
  5. Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985; 315 : 496–8. [Google Scholar]
  6. Hutter B, Helms V, Paulsen M. Tandem repeats in the CpG islands of imprinted genes. Genomics 2006; 88 : 323–32. [Google Scholar]
  7. Kobayashi H, Suda C, Abe T, et al. Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs) : paternally methylated DMRs contain less CpGs than maternaly methylated DMRs. Cytogenet Genome Res 2006; 113 : 130–7. [Google Scholar]
  8. Bourc’his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science 2002; 294 : 2536–9. [Google Scholar]
  9. Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429 : 900–3. [Google Scholar]
  10. Ray-Gallet D, Gérard A, Polo S, Almouzni G. Variations sur le theme du code histone. Med Sci (Paris) 2005; 21 : 384–9. [Google Scholar]
  11. Fournier C, Goto Y, Ballestar E, et al. Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J 2002; 21 : 6560–70. [Google Scholar]
  12. Delaval K, Govin J, Cerqueira F, et al. Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 2007; 26 : 720–9. [Google Scholar]
  13. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004; 14 : 188–95. [Google Scholar]
  14. Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development : reprogramming and beyond. Nat Rev Genet 2008; 9 : 129–40. [Google Scholar]
  15. Kato Y, Kaneda M, Hata K, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 2007; 16 : 2272–80. [Google Scholar]
  16. Morgan, HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 (suppl 1) : R47–58. [Google Scholar]
  17. Van der Heijden, GW, Dieker JW, Derijck AA, et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early embryo. Mech Dev 2005; 122 : 1008–22. [Google Scholar]
  18. Reese KJ, Lin S, Verona RI, et al. Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genet 2007; 3 : 137. [Google Scholar]
  19. Nakamura T, Arai Y, Umehara H, et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 2007; 9 : 64–71. [Google Scholar]
  20. Arnaud P, Feil R. Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Res C Embryo Today 2005; 75 : 81–97. [Google Scholar]
  21. Gilgenkrantz S. À la recherche des empreintes perdues : les épigénotypes anormaux. Med Sci (Paris) 2003; 19 : 15–8. [Google Scholar]
  22. Van den Veyver IB, Al-Hussaini TK. Biparental hydatidiform moles : a maternal effect mutation affecting imprinting in the offspring. Hum Reprod Update 2006; 12 : 233–42. [Google Scholar]
  23. Kovacs BW, Shahbahrami B, Tast DE, Curtin JP. Molecular genetic analysis of complete hydatidiform moles. Cancer Genet Cytogenet 1991; 54 : 143–52. [Google Scholar]
  24. Judson H, Hayward BE, Sheridan E, Bonthron DT. A global disorder of imprinting in the human female germ line. Nature 2002; 416 : 539–42. [Google Scholar]
  25. Hayward BE, De Vos M, Judson H, et al. Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline. BMC Genet 2003; 4 : 2. [Google Scholar]
  26. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet 2004; 363 : 1700–2. [Google Scholar]
  27. Kobayashi H, Sato A, Otsu E, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 2007; 16 : 2542–51. [Google Scholar]
  28. Diaz-Meyer N, Day CD, Khatod K, et al. Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome. J Med Genet 2003; 40 : 797–801. [Google Scholar]
  29. Gicquel C, Rossignol S, Cabrol S, et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 2005; 37 : 1003–7. [Google Scholar]
  30. Weksberg R, Shuman C, Caluseriu O, et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 2002; 11 : 1317–25. [Google Scholar]
  31. Feinberg AP, Cui H, Ohlsson R. DNA methylation and genomic imprinting : insights from cancer into epigenetic mechanisms. Semin Cancer Biol 2002; 12 : 389–98. [Google Scholar]
  32. Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128 : 683–92. [Google Scholar]
  33. Pannetier M, Feil R. Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 2007; 25 : 556–62. [Google Scholar]
  34. Garinis GA, Patrinos GP, Spanakis NE, Menounos PG. DNA hypermethylation : when tumour suppressor genes go silent. Hum Genet 2002; 111 : 115–27. [Google Scholar]
  35. Higashimoto K, Soejima H, Saito T, et al. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain : the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer. Cytogenet Genome Res 2006; 113 : 306–12. [Google Scholar]
  36. Sakatani T, Kaneda A, Iacobuzio-Donahue CA, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 2005; 307 : 1976–8. [Google Scholar]
  37. Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting : a potential marker of colorectal cancer risk. Science 2003; 299 : 1753–5. [Google Scholar]
  38. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 2003; 3 : 89–95. [Google Scholar]
  39. Zaratiegui M, Irvine DV, Martienssens RA. Noncoding RNAs and gene silencing. Cell 2007; 128 : 763–76. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.