Free Access
Med Sci (Paris)
Volume 24, Number 5, Mai 2008
Page(s) 505 - 510
Section M/S revues
Published online 15 May 2008
  1. Tappy L. Metabolic consequences of overfeeding in humans. Curr Opin Clin Nutr Metab Care 2004; 7 : 623–8. [Google Scholar]
  2. Levin BE, Keesey RE. Defense of differing body weight set points in diet-induced obese and resistant rats. Am J Physiol 1998; 274 : R412-R419. [Google Scholar]
  3. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977; 31 : 107–33. [Google Scholar]
  4. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444 : 1027–31. [Google Scholar]
  5. Xu J, Mahowald MA, Ley RE, et al. Evolution of Symbiotic Bacteria in the Distal Human Intestine. PLoS Biol 2007; 5 : e156. [Google Scholar]
  6. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124 : 837–48. [Google Scholar]
  7. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312 : 1355–9. [Google Scholar]
  8. Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005; 3 : 431–8. [Google Scholar]
  9. Wong JM, De SR, Kendall CW, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40 : 235–43. [Google Scholar]
  10. Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev 2006; 27 : 750–61. [Google Scholar]
  11. Servin AL. Ça « chat » entre la microflore intestinale et l’hôte. Med Sci (Paris) 2007; 23 : 229–30. [Google Scholar]
  12. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101 : 15718–23. [Google Scholar]
  13. Foufelle F, Hegarty B, Bobard A, et al. Un nouveau rôle de l’insuline dans la régulation du métabolisme glucido-lipidique hépatique. Med Sci (Paris) 2005; 21 : 569–71. [Google Scholar]
  14. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444 : 1022–3. [Google Scholar]
  15. Cani PD, Neyrinck AM, Maton N, et al. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res 2005; 13 : 1000–7. [Google Scholar]
  16. Cani PD, Daubioul CA, Reusens B, et al. Involvement of endogenous glucagon-like peptide-1(7-36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol 2005; 185 : 457–65. [Google Scholar]
  17. Cani PD, Knauf C, Iglesias MA, et al. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006; 55 : 1484–90. [Google Scholar]
  18. Cani PD, Joly E, Horsmans Y, et al. Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 2006; 60 : 567–72. [Google Scholar]
  19. Keenan MJ, Zhou J, McCutcheon KL, et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 2006; 14 : 1523–34. [Google Scholar]
  20. Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104 : 979–84. [Google Scholar]
  21. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444 : 860–7. [Google Scholar]
  22. Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 2006; 176 : 3070–9. [Google Scholar]
  23. Vreugdenhil AC, Rousseau CH, Hartung T et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol 2003; 170 : 1399–405. [Google Scholar]
  24. Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249 : 1431–3. [Google Scholar]
  25. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56 : 1761–72. [Google Scholar]
  26. Brun P, Castagliuolo I, Leo VD, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292 : G518–25. [Google Scholar]
  27. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292 : E740–7. [Google Scholar]
  28. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125 : 1401–12. [Google Scholar]
  29. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50 : 2374–83. [Google Scholar]
  30. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 2004; 92 : 521–6. [Google Scholar]
  31. Delzenne NM, Cani PD, Daubioul C, et al. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 2005; 93 (suppl 1) : S157–61. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.