Free Access
Med Sci (Paris)
Volume 24, Number 2, Février 2008
Page(s) 197 - 204
Section M/S revues
Published online 15 February 2008
  1. Cahill DP, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392 : 300–3. [Google Scholar]
  2. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396 : 643–9. [Google Scholar]
  3. Hassold T, Hunt P. To err (meiotically) is human : the genesis of human aneuploidy. Nat Rev Genet 2001; 2 : 280–91. [Google Scholar]
  4. Brunet S, Maro B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte : integrating time and space. Reproduction (Cambridge, England) 2005; 130 : 801–11. [Google Scholar]
  5. Verlhac MH, Lefebvre C, Terret ME, et al. L’ovocyte de souris et les particularités des divisions méiotiques. Med Sci (Paris) 2001; 17 : 1046–52. [Google Scholar]
  6. Pellestor F. Maternal age and chromosomal abnormalities in human oocytes. Med Sci (Paris) 2004; 20 : 691–6. [Google Scholar]
  7. Hodges CA, Revenkova E, Jessberger R, et al. SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 2005; 37 : 1351–5. [Google Scholar]
  8. Kirschner M, Mitchison T. Beyond self-assembly : from microtubules to morphogenesis. Cell 1986; 45 : 329–42. [Google Scholar]
  9. Ciciarello M, Lavia P. New CRIME plots. Ran and transport factors regulate mitosis. EMBO Rep 2005; 6 : 714–6. [Google Scholar]
  10. Eichenlaub-Ritter U, Vogt E, Yin H, Gosden R. Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed online 2004; 8 : 45–58. [Google Scholar]
  11. Schuh M, Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 2007; 130 : 484–98. [Google Scholar]
  12. Brunet S, Maria AS, Guillaud P, et al. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol 1999; 146 : 1–12. [Google Scholar]
  13. Dumont J, Petri S, Pellegrin F, et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 2007; 176 : 295–305. [Google Scholar]
  14. Lefebvre C, Terret ME, Djiane A, et al. Meiotic spindle stability depends on MAPK-interacting and spindle- stabilizing protein (MISS), a new MAPK substrate. J Cell Biol 2002; 157 : 603–13. [Google Scholar]
  15. Terret ME, Lefebvre C, Djiane A, et al. DOC1R : a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes. Development 2003; 130 : 5169–77. [Google Scholar]
  16. Petronczki M, Siomos MF, Nasmyth K. Un menage a quatre : the molecular biology of chromosome segregation in meiosis. Cell 2003; 112 : 423–40. [Google Scholar]
  17. Gruber S, Haering CH, Nasmyth K. Chromosomal cohesin forms a ring. Cell 2003; 112 : 765–77. [Google Scholar]
  18. Watanabe Y. Shugoshin : guardian spirit at the centromere. Curr Op Cell Biol 2005; 17 : 590–5. [Google Scholar]
  19. Acquaviva C, Pines J. The anaphase-promoting complex/cyclosome : APC/C. J Cell Sci 2006; 119 : 2401–4. [Google Scholar]
  20. Wassmann K, Benezra R. Mitotic checkpoints : from yeast to cancer. Curr Opin Genet Dev 2001; 11 : 83–90. [Google Scholar]
  21. Irniger S. Preventing fatal destruction : inhibitors of the anaphase-promoting complex in meiosis. Cell cycle 2006; 5 : 405–15. [Google Scholar]
  22. LeMaire-Adkins R, Radke K, Hunt PA. Lack of checkpoint control at the metaphase/anaphase transition : a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 1997; 139 : 1611–9. [Google Scholar]
  23. Terret ME, Wassmann K, Waizenegger I, et al. The Meiosis I-to-Meiosis II Transition in Mouse Oocytes Requires Separase Activity. Curr Biol 2003; 13 : 1797–802. [Google Scholar]
  24. Herbert M, Levasseur M, Homer H, et al. Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat Cell Biol 2003; 5 : 1023–5. [Google Scholar]
  25. Ledan E, Polanski Z, Terret ME, Maro B. Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev Biol 2001; 232 : 400–13. [Google Scholar]
  26. Wassmann K, Niault T, Maro B. Metaphase I Arrest upon Activation of the Mad2-Dependent Spindle Checkpoint in Mouse Oocytes. Curr Biol 2003; 13 : 1596–608. [Google Scholar]
  27. Homer HA, McDougall A, Levasseur M, et al. Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes. Genes Dev 2005; 19 : 202–7. [Google Scholar]
  28. Niault T, Hached K, Sotillo R, et al. Changing mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. PLoS One 2007; 2 : e1165. [Google Scholar]
  29. Tsurumi C, Hoffmann S, Geley S, et al. The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes. J Cell Biol 2004; 167 : 1037–50. [Google Scholar]
  30. Kudo NR, Wassmann K, Anger M, et al. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 2006; 126 : 135–46. [Google Scholar]
  31. Gorr IH, Reis A, Boos D, et al. Essential CDK1-inhibitory role for separase during meiosis I in vertebrate oocytes. Nat Cell Biol 2006; 8 : 1035–7. [Google Scholar]
  32. Thornton BR, Toczyski DP. Precise destruction : an emerging picture of the APC. Genes Dev 2006; 20 : 3069–78. [Google Scholar]
  33. Reis A, Chang HY, Levasseur M, Jones KT. APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat Cell Biol 2006; 8 : 539–40. [Google Scholar]
  34. Deng M, Suraneni P, Schultz RM, Li R. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev Cell 2007; 12 : 301–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.