Free Access
Issue
Med Sci (Paris)
Volume 24, Number 2, Février 2008
Page(s) 169 - 176
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008242169
Published online 15 February 2008
  1. Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerosis plaque formation in the apoliprotein E-deficient mouse. Proc Natl Acad Sci USA 1997; 94 : 4642–6. [Google Scholar]
  2. Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102 : 2919–22. [Google Scholar]
  3. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993; 14 : 426–30. [Google Scholar]
  4. Frostegard J, Ulfgren AK, Nyberg P, et al. Cytokine expression in advanced human atherosclerotic plaques : dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999; 145 : 33–43. [Google Scholar]
  5. Pejnovic N, Vratimos A, Lee SH, et al. Increased atherosclerotic lesions and Th17 cells in interleukin-18 deficient apolipoprotein E-knockout mice fed high-cholesterol diet. Helsinki, Finland, 76th Congress of the European Atherosclerosis Society. Atherosclerosis 2007 : III (suppl) : 13–4. [Google Scholar]
  6. Houtkamp MA, de Boer OJ, van der Loos CM, et al. Adventitial infiltrates associated with advanced atherosclerotic plaques : structural organization suggests generation of local humoral immune responses. J Pathol 2001; 193 : 263–9. [Google Scholar]
  7. Yla-Herttuala S, Palinski W, Butler SW, et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 1994; 14 : 32–40. [Google Scholar]
  8. Palinski W, Tangirala RK, Miller E, et al. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb 1995; 15 : 1569–76. [Google Scholar]
  9. Salonen JT, Yla-Herttuala S, Yamamoto R, et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992; 339 : 883–7. [Google Scholar]
  10. Xu Q, Willeit J, Marosi M, et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 1993; 341 : 255–9. [Google Scholar]
  11. Stemme S. T lymphocytes-role in atherosclerosis and interactions with vascular cells. University of Gothenburg, 1992. [Google Scholar]
  12. Shaw PX, Horkko S, Chang MK, et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 2000; 105 : 1731–40. [Google Scholar]
  13. Paulsson G, Zhou X, Tornquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20 : 10–7. [Google Scholar]
  14. Melian A, Geng YJ, Sukhova GK, et al. CD1 expression in human atherosclerosis : a potential mechanism for T cell activation by foam cells. Am J Pathol 1999; 155 : 775–86. [Google Scholar]
  15. Kleindienst R, Xu Q, Willeit J, et al. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 1993; 142 : 1927–37. [Google Scholar]
  16. Kanwar RK, Kanwar JR, Wang D, et al. Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21 : 1991–7. [Google Scholar]
  17. Benagiano M, D’Elios MM, Amedei A, et al. Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. J Immunol 2005; 174 : 6509–17. [Google Scholar]
  18. George J, Harats D, Gilburd B, et al. Immunolocalization of beta2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques : potential implications for lesion progression. Circulation 1999; 99 : 2227–30. [Google Scholar]
  19. Vaarala O, Manttari M, Manninen V, et al. Anti-cardiolipin antibodies and risk of myocardial infarction in a prospective cohort of middle-aged men. Circulation 1995; 91 : 23–7. [Google Scholar]
  20. Caligiuri G, Stahl D, Kaveri S, et al. Autoreactive antibody repertoire is perturbed in atherosclerotic patients. Lab Invest 2003; 83 : 939–47. [Google Scholar]
  21. Caligiuri G, Liuzzo G, Biasucci LM, Maseri A. Immune system activation follows inflammation in unstable angina : pathogenetic implications. J Am Coll Cardiol 1998; 32 : 1295–304. [Google Scholar]
  22. Caligiuri G, Paulsson G, Nicoletti A, et al. Evidence for antigen-driven T-cell response in unstable angina. Circulation 2000; 102 : 1114–9. [Google Scholar]
  23. Gupta S, Pablo AM, Jiang XC, et al. IFNg potentiates atherosclerosis in apoE knock-out mice. J Clin Invest 1997; 99 : 2752–561. [Google Scholar]
  24. Laurat E, Poirier B, Tupin E, et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2001; 104 : 197–202. [Google Scholar]
  25. Caligiuri G, Rudling M, Ollivier V, et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 2003; 9 : 10–7. [Google Scholar]
  26. Mallat Z, Besnard S, Duriez M, et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85 : e17–24. [Google Scholar]
  27. Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004; 114 : 427–37. [Google Scholar]
  28. Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2003; 163 : 1117–25. [Google Scholar]
  29. Kuiper J. European vascular genomics network. Toulouse, France, 2006. [Google Scholar]
  30. Khallou-Laschet J, Caligiuri G, Groyer E, et al. The proatherogenic role of T cells requires cell division and is dependent on the stage of the disease. Arterioscler Thromb Vasc Biol 2006; 26 : 353–8. [Google Scholar]
  31. Rajavashisth T, Qiao JH, Tripathi S, et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest 1998; 101 : 2702–10. [Google Scholar]
  32. Sun J, Sukhova GK, Wolters PJ, et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 2007; 13 : 719–24. [Google Scholar]
  33. Nicoletti A, Paulsson G, Caligiuri G, Hansson GK. Induction of neonatal tolerance to oxidized-LDL reduces atherosclerosis susceptibility in apoE knockout mice. Mol Med 2000; 6 : 283–90. [Google Scholar]
  34. Zhou X, Caligiuri G, Hamsten A, et al. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21 : 108–14. [Google Scholar]
  35. Caligiuri G, Khallou-Laschet J, Vandaele M, et al. Phosphorylcholine-targeting immunization reduces atherosclerosis. J Am Coll Cardiol 2008; 50 (sous presse). [Google Scholar]
  36. Binder CJ, Horkko S, Dewan A, et al. Pneumococcal vaccination decreases atherosclerotic lesion formation : molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003; 9 : 736–43. [Google Scholar]
  37. Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002; 109 : 745–53. [Google Scholar]
  38. Afek A, George J, Gilburd B, et al. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J Autoimmun 2000; 14 : 115–21. [Google Scholar]
  39. Schett G, Xu Q, Amberger A, et al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 1995; 96 : 2569–77. [Google Scholar]
  40. Xu Q, Dietrich H, Steiner HJ, et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 1992; 12 : 789–99. [Google Scholar]
  41. Harats D, Yacov N, Gilburd B, et al. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 2002; 40 : 1333–8. [Google Scholar]
  42. George J, Afek A, Gilburd B, et al. Induction of early atherosclerosis in LDL-receptor-deficient mice immunized with beta2-glycoprotein I. Circulation 1998; 98 : 1108–15. [Google Scholar]
  43. Tupin E, Nicoletti A, Elhage R, et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 2004; 199 : 417–22. [Google Scholar]
  44. Zhou X, Robertson AK, Hjerpe C, Hansson GK. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26 : 864–70. [Google Scholar]
  45. George J, Harats D, Gilburd B, et al. Adoptive transfer of beta(2)-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation 2000; 102 : 1822–7. [Google Scholar]
  46. Nicoletti A, Kaveri S, Caligiuri G, et al. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J Clin Invest 1998; 102 : 910–8. [Google Scholar]
  47. Mallat Z, Gojova A, Brun V, et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003; 108 : 1232–7. [Google Scholar]
  48. Mallat Z, Gojova A, Marchiol-Fournigault C, et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001; 89 : 930–4. [Google Scholar]
  49. Ait-Oufella H, Salomon BL, Potteaux S, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12 : 178–80. [Google Scholar]
  50. Wyplosz B, Capron L. Aspects infectieux de l’athérosclérose. Med Sci (Paris) 2004; 20 : 169–74. [Google Scholar]
  51. Caligiuri G. Rôle de l’immunité dans l’athérosclérose et dans les syndromes coronariens aigus. Med Sci (Paris) 2004; 20 : 175–81. [Google Scholar]
  52. Mallat Z, Tedgui A. Apoptose et syndromes coronariens aigus. Med Sci (Paris) 2004; 20 : 298–303. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.