Free Access
Med Sci (Paris)
Volume 23, Number 12, Décembre 2007
Page(s) 1148 - 1158
Section M/S revues
Published online 15 December 2007
  1. Prusiner SB, Scott MR, Dearmond SJ, Cohen FE. Prion protein biology. Cell 1998; 93 : 337–48. [Google Scholar]
  2. Caughey B, Race RE, Chesebro B. Detection of prion protein mRNA in normal and scrapie-infected tissues and cell lines. J Gen Virol 1988; 69 : 711–6. [Google Scholar]
  3. Meyer RK, McKinley MP, Bowman KA, et al. Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 1986; 83 : 2310–4. [Google Scholar]
  4. Aguzzi A, Haass C. Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science 2003; 302 : 814–8. [Google Scholar]
  5. Cuille J, Chelle P. La maladie dite tremblante du mouton est-elle inoculable ? CR Acad Sci Paris 1936; 1552–4. [Google Scholar]
  6. Andreoletti O, Lacroux C, Chabert A, et al. PrP(Sc) accumulation in placentas of ewes exposed to natural scrapie: influence of fetal PrP genotype and effect on ewe-to-lamb transmission. J Gen Virol 2002; 83 : 2607–16. [Google Scholar]
  7. Goldmann W, Hunter N, Smith G, et al. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J Gen Virol 1994; 75 : 989–95. [Google Scholar]
  8. Wilesmith JW. An epidemiologist’s view of bovine spongiform encephalopathy. Philos Trans R Soc Lond B Biol Sci 1994; 343 : 357–61. [Google Scholar]
  9. Biacabe AG, Laplanche JL, Ryder S, Baron T. Distinct molecular phenotypes in bovine prion diseases. EMBO Rep 2004; 5 : 110–5. [Google Scholar]
  10. Pearson GR, Gruffydd-Jones TJ, Wyatt JM, et al. Feline spongiform encephalopathy. Vet Rec 1991; 128 : 532. [Google Scholar]
  11. Baron T, Belli P, Madec JY, et al. Spongiform encephalopathy in an imported cheetah in France. Vet Rec 1997; 141 : 270–1. [Google Scholar]
  12. Lezmi S, Martin S, Simon S, et al. Comparative molecular analysis of the abnormal prion protein in field scrapie cases and experimental bovine spongiform encephalopathy in sheep by use of Western blotting and immunohistochemical methods. J Virol 2004; 78 : 3654–62. [Google Scholar]
  13. Baron TG, Biacabe AG. Molecular analysis of the abnormal prion protein during coinfection of mice by bovine spongiform encephalopathy and a scrapie agent. J Virol 2001; 75 : 107–14. [Google Scholar]
  14. Eloit M, Adjou K, Coulpier M, et al. BSE agent signatures in a goat. Vet Rec 2005; 156 : 523–4. [Google Scholar]
  15. Buschmann A, Biacabe AG, Ziegler U, et al. Atypical scrapie cases in Germany and France are identified by discrepant reaction patterns in BSE rapid tests. J Virol Methods 2004; 117 : 27–36. [Google Scholar]
  16. Miller MW, Williams ES. Chronic wasting disease of cervids. Curr Top Microbiol Immunol 2004; 284 : 193–214. [Google Scholar]
  17. Kong Q, Huang S, Zou W, et al. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J Neurosci 2005; 25 : 7944–9. [Google Scholar]
  18. Creutzfeldt H. Über eine eigenartige herdförmige Erkrankung des Zentralnervensystems. Zeitschrift für die Gesamte Neurologie und Psychiatrie 1920; 57 : 1–18. [Google Scholar]
  19. Jakob A. Über eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswerten anatomischen Befunde (spastische Pseudosklerose-Encephalomyelopathie mit disseminierten Degenerationsherden). Deutsche Zeitschrift für Nervenheilkunde 1921; 70 : 132–46. [Google Scholar]
  20. Parchi P, Gambetti P. Human prion diseases. Curr Opin Neurol 1995; 8 : 286–93. [Google Scholar]
  21. Will RG, Ironside JW, Zeidler M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996; 347 : 921–5. [Google Scholar]
  22. Ghani AC, Donnelly CA, Ferguson NM, Anderson RM. Updated projections of future vCJD deaths in the UK. BMC Infect Dis 2003; 3 : 4. [Google Scholar]
  23. Hilton DA, Ghani AC, Conyers L, et al. Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol 2004; 203 : 733–9. [Google Scholar]
  24. Ironside JW. Variant Creutzfeldt-Jakob disease: risk of transmission by blood transfusion and blood therapies. Haemophilia 2006; 12 (suppl 1) : 8–15. [Google Scholar]
  25. Ironside JW, Bishop MT, Connolly K, et al. Variant Creutzfeldt-Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. Br Med J 2006; 332 : 1186–8. [Google Scholar]
  26. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216 : 136–44. [Google Scholar]
  27. Lasmezas CI, Deslys JP, Robain O, et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 1997; 275 : 402–5. [Google Scholar]
  28. Manson JC, Jamieson E, Baybutt H, et al. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J 1999; 18 : 6855–64. [Google Scholar]
  29. Hsiao KK, Groth D, Scott M, et al. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc Natl Acad Sci USA 1994; 91 : 9126–30. [Google Scholar]
  30. Legname G, Baskakov IV, Nguyen HO, et al. Synthetic mammalian prions. Science 2004; 305 : 673–6. [Google Scholar]
  31. Castilla J, Saa P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell 2005; 121 : 195–206. [Google Scholar]
  32. Manuelidis L. A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 2007; 100 : 897–915. [Google Scholar]
  33. Manuelidis L. Dementias, neurodegeneration, and viral mechanisms of disease from the perspective of human transmissible encephalopathies. Ann NY Acad Sci 1994; 724 : 259–81. [Google Scholar]
  34. Leblanc P, Alais S, Porto-Carreiro I, et al. Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 2006; 25 : 2674–85. [Google Scholar]
  35. Wickner RB, Edskes HK, Maddelein ML, et al. Prions of yeast and fungi. Proteins as genetic material. J Biol Chem 1999; 274 : 555–8. [Google Scholar]
  36. Tuite MF, Cox BS. Propagation of yeast prions. Nat Rev Mol Cell Biol 2003; 4 : 878–90. [Google Scholar]
  37. Bueler H, Fischer M, Lang Y, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992; 356 : 577–82. [Google Scholar]
  38. Mouillet-Richard S, Ermonval M, Chebassier C, et al. Signal transduction through prion protein. Science 2000; 289 : 1925–8. [Google Scholar]
  39. Lehmann S. Metal ions and prion diseases. Curr Opin Chem Biol 2002; 6 : 187–92. [Google Scholar]
  40. Chen S, Mange A, Dong L, Schachner M. Different signal transduction pathways are involved in neurite outgrowth and neuronal survival mediated by the prion protein. Mol Cell Neurosci 2003; 2 : 227–33. [Google Scholar]
  41. Simoneau S, Haik S, Leucht C, et al. Different isoforms of the non-integrin laminin receptor are present in mouse brain and bind PrP. Biol Chem 2003; 384 : 243–6. [Google Scholar]
  42. Cazaubon S, Viegas P, Couraud PO. Fonctions de la protéine prion PrPc.Med Sci (Paris) 2007; 23 : 741–5. [Google Scholar]
  43. Steele AD, Emsley JG, Ozdinler PH, et al. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci USA 2006; 103 : 3416–21. [Google Scholar]
  44. Zhang CC, Steele AD, Lindquist S, Lodish HF. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA 2006; 103 : 2184–9. [Google Scholar]
  45. Zerr I, Bodemer M, Weber T. The 14-3-3 brain protein and transmissible spongiform encephalopathy. N Engl J Med 1997; 336 : 875. [Google Scholar]
  46. Brown P. Blood infectivity, processing and screening tests in transmissible spongiform encephalopathy. Vox Sang 2005; 89 : 63–70. [Google Scholar]
  47. Brown P. Drug therapy in human and experimental transmissible spongiform encephalopathy. Neurology 2002; 58 : 1720–5. [Google Scholar]
  48. Todd NV, Morrow J, Doh-Ura K, et al. Cerebroventricular infusion of pentosan polysulphate in human variant Creutzfeldt-Jakob disease. J Infect 2005; 50 : 394–6. [Google Scholar]
  49. Aguzzi A, Glatzel M, Montrasio F, et al. Interventional strategies against prion diseases. Nat Rev Neurosci 2001; 2 : 745–9. [Google Scholar]
  50. Mallucci G, Dickinson A, Linehan J, et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. Science 2003; 302 : 871–4. [Google Scholar]
  51. Crozet C, Lin YL, Mettling C, et al. Inhibition of PrPSc formation by lentiviral gene transfer of PrP containing dominant negative mutations. J Cell Sci 2004; 117 : 5591–7. [Google Scholar]
  52. Fernandez-Bellot E, Guillemet E, Ness F, et al. The URE3 phenotype: evidence for a soluble prion in yeast. EMBO Rep 2002; 3 : 76–81. [Google Scholar]
  53. Saupe SJ, Clave C Begueret J. Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol 2000; 3 : 608–12. [Google Scholar]
  54. Si K, Lindquist S, Kandel ER. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 2003; 115 : 879–91. [Google Scholar]
  55. Shorter J, Lindquist S. Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 2005; 6 : 435–50. [Google Scholar]
  56. Cazaubon S, Viegas P, Couraud PO. Fonctions de la protéine prion PRPC. Med Sci (Paris) 2007; 23 : 741–5. [Google Scholar]
  57. Bousset L, Melki R. Protéines prions : propriétés de repliement et d’agrégation. Med Sci (Paris) 2005; 21 : 634–40. [Google Scholar]
  58. Madly B, Chrétien F. La structure de la protéine prion et la relation avec son infectiosité. Med Sci (Paris) 2005; 21 : 806–7. [Google Scholar]
  59. Février B, Laude H, Raposo G, Vilette D. Les exosomes : des convoyeurs de prions ? Med Sci (Paris) 2005; 21 : 132–3. [Google Scholar]
  60. Goggin K, Roucou X. La protéine prion ne se fait pas prier pour faire des agrégats moléculaires. Med Sci (Paris) 2006; 22 : 1013–4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.