Free Access
Issue
Med Sci (Paris)
Volume 23, Number 11, Novembre 2007
Page(s) 975 - 979
Section M/S revues
DOI https://doi.org/10.1051/medsci/20072311975
Published online 15 November 2007
  1. Theilgaard-Monch K, Raaschou-Jensen K, Palm H, et al. Flow cytometric assessment of lymphocyte subsets, lymphoid progenitors, and hematopoietic stem cells in allogeneic stem cell grafts. Bone Marrow Transplant 2001; 28 : 1073–82. [Google Scholar]
  2. Peggs KS, Verfuerth S, D’Sa S, et al. Assessing diversity: immune reconstitution and T-cell receptor BV spectratype analysis following stem cell transplantation. Br J Haematol 2003; 120 : 154–65. [Google Scholar]
  3. Dalle JH, Menezes J, Wagner E, et al. Characterization of cord blood natural killer cells: Implications for transplantation and neonatal infections. Pediatr Res 2005; 57 : 649–55. [Google Scholar]
  4. Rossi M, Young JW. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 2005; 175 : 1373–81. [Google Scholar]
  5. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005; 23 : 275–306. [Google Scholar]
  6. Borras FE, Matthews NC, Lowdell MW, Navarrete CV. Identification of both myeloid CD11c+ and lymphoid CD11c- dendritic cell subsets in cord blood. Br J Haematol 2001; 113 : 925–31. [Google Scholar]
  7. Hunt DW, Huppertz HI, Jiang HJ, Petty RE. Studies of human cord blood dendritic cells: evidence for functional immaturity. Blood 1994; 84 : 4333–43. [Google Scholar]
  8. Goriely S, Vincart B, Stordeur P, et al. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol 2001; 166 : 2141–6. [Google Scholar]
  9. Krumbiegel D, Rohr J, Schmidtke P, et al. Efficient maturation and cytokine production of neonatal DCs requires combined proinflammatory signals. Clin Dev Immunol 2005; 12 : 99–105. [Google Scholar]
  10. De Wit D, Olislagers V, Goriely S, et al. Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood 2004; 103 : 1030–2. [Google Scholar]
  11. Yan SR, Qing G, Byers DM, et al. Role of MyD88 in diminished tumor necrosis factor alpha production by newborn mononuclear cells in response to lipopolysaccharide. Infect Immun 2004; 72 : 1223–9. [Google Scholar]
  12. Chang M, Suen Y, Lee SM, et al. Transforming growth factor-beta 1, macrophage inflammatory protein-1 alpha, and interleukin-8 gene expression is lower in stimulated human neonatal compared with adult mononuclear cells. Blood 1994; 84 : 118–24. [Google Scholar]
  13. Lee SM, Suen Y, Chang L, et al. Decreased interleukin-12 (IL-12) from activated cord versus adult peripheral blood mononuclear cells and upregulation of interferon-gamma, natural killer, and lymphokine-activated killer activity by IL-12 in cord blood mononuclear cells. Blood 1996; 88 : 945–54. [Google Scholar]
  14. Qian JX, Lee SM, Suen Y, Knoppel E, et al. Decreased interleukin-15 from activated cord versus adult peripheral blood mononuclear cells and the effect of interleukin-15 in upregulating antitumor immune activity and cytokine production in cord blood. Blood 1997; 90 : 3106–17. [Google Scholar]
  15. De WD, Tonon S, Olislagers V, et al. Impaired responses to toll-like receptor 4 and toll-like receptor 3 ligands in human cord blood. J Autoimmun 2003; 21 : 277–81. [Google Scholar]
  16. Wilson CB, Westall J, Johnston L, et al. Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies. J Clin Invest 1986; 77 : 860–7. [Google Scholar]
  17. Hassan J, O’Neill S, O’Neill LA, et al. Signalling via CD28 of human naive neonatal T lymphocytes. Clin Exp Immunol 1995; 102 : 192–8. [Google Scholar]
  18. Nonoyama S, Penix LA, Edwards CP, et al. Diminished expression of CD40 ligand by activated neonatal T cells. J Clin Invest 1995; 95 : 66–75. [Google Scholar]
  19. Zola H, Fusco M, Macardle PJ, et al. Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. Pediatr Res 1995; 38 : 397–403. [Google Scholar]
  20. Barbey C, Irion O, Helg C, et al. Characterisation of the cytotoxic alloresponse of cord blood. Bone Marrow Transplant 1998; 22 (suppl 1) : S26–30. [Google Scholar]
  21. Hermann E, Truyens C, Alonso-Vega C, et al. Human fetuses are able to mount an adultlike CD8 T-cell response. Blood 2002; 100 : 2153–8. [Google Scholar]
  22. Renda MC, Fecarotta E, Dieli F, et al. Evidence of alloreactive T lymphocytes in fetal liver: implications for fetal hematopoietic stem cell transplantation. Bone Marrow Transplant 2000; 25 : 135–41. [Google Scholar]
  23. Flake AW, Zanjani ED. In utero hematopoietic stem cell transplantation. A status report. JAMA 1997; 278 : 932–7. [Google Scholar]
  24. Godfrey WR, Spoden DJ, Ge YG, et al. Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105 : 750–8. [Google Scholar]
  25. Cupedo T, Nagasawa M, Weijer K, et al. Development and activation of regulatory T cells in the human fetus. Eur J Immunol 2005; 35 : 383–90. [Google Scholar]
  26. Ribeiro-do-Couto LM, Boeije LC, Kroon JS, et al. High IL-13 production by human neonatal T cells: neonate immune system regulator ? Eur J Immunol 2001; 31 : 3394–402. [Google Scholar]
  27. Roth I, Corry DB, Locksley RM, et al. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med 1996; 184 : 539–48. [Google Scholar]
  28. O’Garra A, Howard M. IL-10 production by CD5 B cells. Ann NY Acad Sci 1992; 651 : 182–99. [Google Scholar]
  29. Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19 : 683–765. [Google Scholar]
  30. Payvandi F, Amrute S, Fitzgerald-Bocarsly P. Exogenous and endogenous IL-10 regulate IFN-alpha production by peripheral blood mononuclear cells in response to viral stimulation. J Immunol 1998; 160 : 5861–8. [Google Scholar]
  31. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321 : 1174–8. [Google Scholar]
  32. Dalle JH, Duval M, Moghrabi A, et al. Results of an unrelated transplant search strategy using partially HLA-mismatched cord blood as an immediate alternative to HLA-matched bone marrow. Bone Marrow Transplant 2004; 33 : 605–11. [Google Scholar]
  33. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 1997; 337 : 373–81. [Google Scholar]
  34. Holler E. Cytokines, viruses, and graft-versus-host disease. Curr Opin Hematol 2002; 9 : 479–84. [Google Scholar]
  35. Cohen JL, Trenado A, Vasey D, et al. CD4+CD25+ immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 2002; 196 : 401–6. [Google Scholar]
  36. Medawar PB. Immunological tolerance. Science 1961; 133:303–6. [Google Scholar]
  37. Harris DT, Schumacher MJ, LoCascio J, et al. Immunoreactivity of umbilical cord blood and post-partum maternal peripheral blood with regard to HLA-haploidentical transplantation. Bone Marrow Transplant 1994; 14 : 63–8. [Google Scholar]
  38. Rein DT, Breidenbach M, Honscheid B, et al. Preeclamptic women are deficient of interleukin-10 as assessed by cytokine release of trophoblast cells in vitro. Cytokine 2003; 23 : 119–25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.