Free Access
Med Sci (Paris)
Volume 23, Number 6-7, Juin-Juillet 2007
Page(s) 626 - 632
Section M/S revues
Published online 15 June 2007
  1. Asselin-Labat ML, Sutherland KD, Barker H, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2006; 9 : 201–9. [Google Scholar]
  2. Asselin-Labat ML, Shackleton M, Stingl J, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 2006; 98 : 1011–4. [Google Scholar]
  3. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127 : 1041–55. [Google Scholar]
  4. Bertucci F, Houlgatte R, Benziane A, et al. Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Hum Mol Genet 2000; 9 : 2981–991. [Google Scholar]
  5. Jenssen TK, Kuo WP, Stokke T, Hovig E. Associations between gene expressions in breast cancer and patient survival. Hum Genet 2002; 111 : 411–20. [Google Scholar]
  6. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100 : 8418–23. [Google Scholar]
  7. Birnbaum D, Bertucci F, Ginestier C, Tagett R, et al. Basal and luminal breast cancers : basic or luminous ? Int J Oncol 2004; 25 : 249–58. [Google Scholar]
  8. Charafe-Jauffret E, Ginestier C, Monville F, et al. How to best classify breast cancer : conventional and novel classifications. Int J Oncol 2005; 27 : 1307–13. [Google Scholar]
  9. Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10 : 515–27. [Google Scholar]
  10. Charafe-Jauffret E, Ginestier C, Monville F, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 2006; 25 : 2273–84. [Google Scholar]
  11. Bertucci F, Borie N, Ginestier C, et al. Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene 2004; 23 : 2564–75. [Google Scholar]
  12. Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 2006; 66 : 1630–9. [Google Scholar]
  13. Abd El-Rehim DM, Ball G, Pinder SE, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 2005; 116 : 340–50. [Google Scholar]
  14. Dolled-Filhart M, Ryden L, Cregger M, et al. Classification of breast cancer using genetic algorithms and tissue microarrays. Clin Cancer Res 2006; 12 : 6459–68. [Google Scholar]
  15. Jacquemier J, Ginestier C, Rougemont J, et al. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res 2005; 65 : 767–79. [Google Scholar]
  16. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10 : 5367–74. [Google Scholar]
  17. Bertucci F, Finetti P, Rougemont J, et al. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 2005; 65 : 2170–8. [Google Scholar]
  18. Van Laere SJ, Van den Eynden GG, Van der Auwera I, et al. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat 2006; 95 : 243–55. [Google Scholar]
  19. Bertucci F, Finetti P, Cervera N, et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 2006; 66 : 4636–44. [Google Scholar]
  20. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 2006; 25 : 5846–53. [Google Scholar]
  21. Korkola JE, DeVries S, Fridlyand J, et al. Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 2003; 63 : 7167–75. [Google Scholar]
  22. Zhao H, Langerod A, Ji Y, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 2004; 15 : 2523–36. [Google Scholar]
  23. Buttitta F, Felicioni L, Barassi F, et al. PIK3CA mutation and histological type in breast carcinoma : high frequency of mutations in lobular carcinoma. J Pathol 2006; 208 : 350–5. [Google Scholar]
  24. Holst F, Stahl PR, Ruiz C, et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet 2007; 39 : 655–60. [Google Scholar]
  25. Chin K, DeVries S, Fridlyand J, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006; 10 : 529–41. [Google Scholar]
  26. Gelsi-Boyer V, Orsetti B, Cervera N, et al. Comprehensive profiling of 8p11-12 amplification in breast cancer. Mol Cancer Res 2005; 3 : 655–67. [Google Scholar]
  27. Ray ME, Yang ZQ, Albertson D, et al. Genomic and expression analysis of the 8p11-12 amplicon in human breast cancer cell lines. Cancer Res 2004; 64 : 40–7. [Google Scholar]
  28. Reis-Filho JS, Simpson PT, Turner NC, et al. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 2006; 12 : 6652–62. [Google Scholar]
  29. Letessier A, Sircoulomb F, Ginestier C, et al. Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 2006; 6 : 245. [Google Scholar]
  30. Coe BP, Ylstra B, Carvalho B, et al. Resolving the resolution of array CGH. Genomics 2007; 89 : 647–53. [Google Scholar]
  31. Edgren H, Kallioniemi O. Integrated breast cancer genomics. Cancer Cell 2006; 10 : 453–4. [Google Scholar]
  32. Sorlie T. Molecular classification of breast tumors : toward improved diagnostics and treatments. Meth Mol Biol 2007; 360 : 91–114. [Google Scholar]
  33. Benvenuti S, Arena S, Bardelli A. Identification of cancer genes by mutational profiling of tumor genomes. FEBS Lett 2005; 579 : 1884–90. [Google Scholar]
  34. Chanock SM, Burdett LP, Yeager MP, et al. Somatic sequence alterations in twenty-one genes selected by expression profile analysis of breast carcinomas. Breast Cancer Res 2007; 9 : R5. [Google Scholar]
  35. Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314 : 268–74. [Google Scholar]
  36. Moyano JV, Evans JR, Chen F, et al. AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 2006; 116 : 261–70. [Google Scholar]
  37. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004; 101 : 781–6. [Google Scholar]
  38. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17 : 1253–70. [Google Scholar]
  39. Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65 : 5506–11. [Google Scholar]
  40. Al Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100 : 3983–8. [Google Scholar]
  41. Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007; 356 : 217–26. [Google Scholar]
  42. Tognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002; 2 : 367–76. [Google Scholar]
  43. Wicha MS, Liu S, Dontu G. Cancer stem cells : an old idea : a paradigm shift. Cancer Res 2006; 66 : 1883–90. [Google Scholar]
  44. Carroll JS, Brown M. Estrogen receptor target gene : an evolving concept. Mol Endocrinol 2006; 20 : 1707–14. [Google Scholar]
  45. Bergamaschi A, Kim YH, Wang P, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chrom Cancer 2006; 45 : 1033–40. [Google Scholar]
  46. Yao J, Weremowicz S, Feng B, et al. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 2006; 66 : 4065–78. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.