Free Access
Med Sci (Paris)
Volume 23, Number 5, Mai 2007
Page(s) 497 - 501
Section M/S revues
Published online 15 May 2007
  1. Annesi-Maesano I, Dab W. Air pollution and the lung: epidemiological approach. Med Sci (Paris) 2006; 22 : 589–94. [Google Scholar]
  2. Xiao GG, Wang M, Li N, et al. Use of proteomics to demonstrate a hierarchical oxidative stress response to Diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 2003; 278 : 50781–90. [Google Scholar]
  3. Li N, Hao M, Phalen RF, et al. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 2003; 109 : 250–65. [Google Scholar]
  4. MacNee W, Donaldson K. Mechanisms of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Respir J 2003; 21 : 47–51. [Google Scholar]
  5. Wilson MR, Lightbody JH, Donaldson K, et al. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 2002; 184 : 172–9. [Google Scholar]
  6. Donaldson K, Brown DM, Mitchell C, et al. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ Health Perspect 1997; 105 : 1285–9. [Google Scholar]
  7. Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111 : 455–60. [Google Scholar]
  8. Hiura TS, Kaszubowski MP, Li N, Nel AE. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol 1999; 163 : 5582–91. [Google Scholar]
  9. Baulig A, Garlatti M, Bonvallot V, et al. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285 : L671–9. [Google Scholar]
  10. Squadrito GL, Cueto R, Dellinger B, Pryor W. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Rad Biol Med 2001; 31 : 1132–8. [Google Scholar]
  11. Krishna MT, Chauhan AJ, Frew AJ, Holgate ST. Toxicological mechanisms underlying oxidant pollutant-induced airway injury. Rev Environ Health 1998; 13 : 59–71. [Google Scholar]
  12. Nichols BG, Woods JS, Luchtel DL, et al. Effects of ozone exposure on nuclear factor-kappaB activation and tumor necrosis factor-alpha expression in human nasal epithelial cells. Toxicol Sci 2001; 60 : 356–62. [Google Scholar]
  13. Gilmour PS, Ziesenis A, Morrison ER, et al. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 2004; 195 : 35–44. [Google Scholar]
  14. Ghio AJ, Devlin RB. Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 2001; 164 : 704–8. [Google Scholar]
  15. Bonvallot V, Baeza-Squiban A, Baulig A, et al. Organic compounds from Diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol 2001; 25 : 515–21. [Google Scholar]
  16. Li N, Nel E. Role of the Nrf2-mediated signalling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antiox Redox Signal 2006; 8 : 88–98. [Google Scholar]
  17. Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105 : 411–4. [Google Scholar]
  18. Churg A, Brauer M, del Carmen Avila-Casado M, et al. Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect 2003; 111 : 714–8. [Google Scholar]
  19. Hiura TS, Li N, Kaplan R, et al.The role of a mitochondrial pathway in the induction of apoptosis by chemicals extracted from Diesel exhaust particles. J Immunol 2000; 165 : 2703–11. [Google Scholar]
  20. Bayram H, Ito K, Issa R, et al. Regulation of human lung epithelial cell numbers by diesel exhaust particles. Eur Respir J 2006; 27 : 705–13. [Google Scholar]
  21. Bonner JC. The epidermal growth factor receptor at the crossroads of airway remodeling. Am J Physiol Lung Cell Mol Physiol 2002; 283 : L528–30. [Google Scholar]
  22. Wu W, Samet JM, Ghio AJ, Devlin RB. Activation of the EGF receptor signalling pathway in airway epithelial cells exposed to Utah valley PM. Am J Physiol Lung Cell Mol Physiol 2001; 281 : L483–9. [Google Scholar]
  23. Carpenter G. Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways. J Cell Biol 1999; 146 : 697–702. [Google Scholar]
  24. Blanchet S, Ramgolam K, Baulig A, Marano F, Baeza-Squiban A. Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol 2004; 30 : 421–7. [Google Scholar]
  25. Lemjabbar H, Li D, Gallup M, et al. Tobacco smoke-induced lung cell proliferation mediated by tumor necrosis factor (alpha)-converting enzyme and amphiregulin. J Biol Chem 2003; 278: 26202–7. [Google Scholar]
  26. Auger F, Gendron MC, Chamot C, et al. Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol 2006; 215 : 285–9 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.