Free Access
Med Sci (Paris)
Volume 22, Number 6-7, Juin-Juillet 2006
Page(s) 595 - 600
Section M/S revues
Published online 15 June 2006
  1. Ciba Guest Symposium. Terminology, definition and classification of chronic pulmonary emphysema and related conditions. Thorax 1959; 14 : 286–99. [Google Scholar]
  2. American Thoracic Society. Chronic bronchitis, asthma, and pulmonary emphysema. Statement by the committee on diagnostic standards for nontuberculous respiratory diseases. Am Rev Respir Dis 1962; 85 : 762–8. [Google Scholar]
  3. Barnes PJ, Drazen JM. Pathophysiology of asthma. In : Barnes PJ, Drazen JM, Rennard S, Thomson NC, eds. Asthma and COPD. Amsterdam : Academic Press, 2002 : 343–59. [Google Scholar]
  4. Elston WJ, Whittaker AJ, Khan LN, et al. Safety of research bronchoscopy, biopsy and bronchoalveolar lavage in asthma. Eur Respir J 2004; 24 : 375–7. [Google Scholar]
  5. Pizzichini E, Pizzichini MMM, Efthimiadis A, et al. Indices of airway inflammation in induced sputum : reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med 1996; 154 : 308–17. [Google Scholar]
  6. Fahy JV. A safe, simple, standardized method should be used for sputum induction for research purposes. Clin Exp Allergy 1998; 28 : 1047–9. [Google Scholar]
  7. Green RH, Brighting CE, McKenna S, et al. Asthma exacerbations and sputum eosinophil counts : a randomised controlled trial. Lancet 2002; 360 : 1715–21. [Google Scholar]
  8. Wechsler ME, Grasemann H, Deykin A, et al. Exhaled nitric oxide in patients with asthma. Am J Respir Crit Care Med 2000; 162 : 2043–7. [Google Scholar]
  9. Piipari R, Piirila P, Keskinen H, et al. Exhaled nitric oxide in specific challenge tests to assess occupational asthma. Eur Respir J 2002; 20 : 1532–7. [Google Scholar]
  10. Maestrelli P, Saetta M, Di Stefano A, et al. Comparison of leukocyte counts in sputum, bronchial biopsies, and bronchoalveolar lavage. Am J Respir Crit Care Med 1995; 152 : 1926–31. [Google Scholar]
  11. Belda J, Leigh R, Parameswaran K, et al. Induced sputum cell counts in healthy adults. Am J Respir Crit Care Med 2000; 161 : 475–8. [Google Scholar]
  12. Efthimiadis A, Jayaram L, Weston S, et al. Induced sputum : time from expectoration to processing. Eur Respir J 2002; 19 : 706–8. [Google Scholar]
  13. Chan-Yeung M, Malo JL. Occupational asthma. N Engl J Med 1995; 333 : 107–12. [Google Scholar]
  14. Bernstein IL, Chan-Yeung M, Malo JL, Berstein DI. Asthma in the workplace, 3rd ed. New York : Francis and Taylor, 2006. [Google Scholar]
  15. Obata H, Cittrick M, Chan H, Chan-Yeung M. Sputum eosinophils and exhaled nitric oxide during late asthmatic reaction in patients with western red cedar asthma. Eur Respir J 1999; 13 : 489–95. [Google Scholar]
  16. Lemière C, Pizzichini MMM, Balkissoon R, et al. Diagnosing occupational asthma : use of induced sputum. Eur Respir J 1999; 13 : 482–8. [Google Scholar]
  17. Lemière C, Chaboillez S, Malo JL, Cartier A. Changes in sputum cell counts after exposure to occupational agents : What do they mean ? J Allergy Clin Immunol 2001; 107 : 1063–8. [Google Scholar]
  18. DiStefano F, DiGiampaolo L, Verna N, DiGioacchino M. Occupational eosinophilic bronchitis in a foundry worker exposed to isocyanate and a baker exposed to flour. Thorax 2006 (sous presse). [Google Scholar]
  19. Alvarez MJ, Castillo R, Rey A, et al. Occupational asthma in a grain worker due to Lepidoglyphus destructor, assessed by bronchial provocation test and induced sputum. Allergy 1999; 54 : 884–9. [Google Scholar]
  20. Maestrelli P, Calcagni PG, Saetta M, et al. Sputum eosinophilia after asthmatic responses induced by isocyanates in sensitized subjects. Clin Exp Allergy 1994; 24 : 29–34. [Google Scholar]
  21. Yacoub MR, Malo JL, Labrecque M, et al. Occupational eosinophilic bronchitis. Allergy 2005; 60 : 1542–4. [Google Scholar]
  22. Park HS, Jung KS, Kim HY, et al. Neutrophil activation following TDI bronchial challenges to the airway secretion from subjects with TDI-induced asthma. Clin Exp Allergy 1999; 29 : 1395–401. [Google Scholar]
  23. Lemière C, Romeo P, Chaboillez S, et al. Airway inflammation and functional changes after exposure to different concentrations of isocyanates. J Allergy Clin Immunol 2002; 110 : 641–6. [Google Scholar]
  24. Park HS, Jung KS, Hwang SC, et al. Neutrophil infiltration and release of IL-8 in airway mucosa from subjects with grain dust-induced occupational asthma. Clin Exp Allergy 1998; 28 : 724–30. [Google Scholar]
  25. Douwes J, Gibson P, Pekkanen J, Pearce N. Non-eosinophilic asthma : importance and possible mechanisms. Thorax 2002; 57 : 643–8. [Google Scholar]
  26. Lemière C, Chaboilliez S, Trudeau C, et al. Characterization of airway inflammation after repeated exposures to occupational agents. J Allergy Clin Immunol 2000; 106 : 1163–70. [Google Scholar]
  27. Girard F, Chaboillez S, Cartier A, et al. An effective strategy for diagnosing occupational asthma. Induced sputum. Am J Respir Crit Care Med 2004; 170 : 845–50. [Google Scholar]
  28. Anees W, Huggins V, Pavord ID, et al. Occupational asthma due to low molecular weight agents : eosinophilic and non-eosinophilic variants. Thorax 2002; 57 : 231–6. [Google Scholar]
  29. Leigh R, Hargreave FE. Occupational neutrophilic asthma. Can Respir J 1999; 6 : 194–6. [Google Scholar]
  30. Park HS, Kim HA, Jung JW, et al. Metalloproteinase-9 is increased after toluene diisocyanate exposure in the induced sputum from patients with toluene diisocyanate-induced asthma. Clin Exp Allergy 2003; 33 : 113–8. [Google Scholar]
  31. Krakowiak A, Krawczyk-Adamus P, Dudek W, et al. Changes in cellular and biochemical profiles of induced sputum after allergen-induced asthmatic response : method for studying occupational allergic airway inflammation. Int J Occup Med Environ Health 2005; 18 : 27–33. [Google Scholar]
  32. Bernstein IL, Keskinen H, Blanc PD, et al. Medicolegal aspects, compensation aspects, evaluation of impairment/disability. In : Bernstein IL, Chan-Yeung M, Bernstein DI, Malo Jl, eds. Asthma in the workplace, 3rd ed. New York : Francis and Taylor, 2006 : 319–51. [Google Scholar]
  33. Maghni K, Lemière C, Ghezzo H, et al. Airway inflammation after cessation of exposure to agents causing occupational asthma. Am J Respir Crit Care Med 2004; 169 : 367–72. [Google Scholar]
  34. Chan-Yeung M, Obata H, Dittrick M, et al. Airway inflammation, exhaled nitric oxide, and severity of asthma in patients with western red cedar asthma. Am J Respir Crit Care Med 1999; 159 : 1434–8. [Google Scholar]
  35. Gibson PG, Dolovich J, Denburg J, Ramsdale EH. Chronic cough : eosinophilic bronchitis without asthma. Lancet 1989 : 1346–8. [Google Scholar]
  36. Lemière C, Efthimiadis A, Hargreave FE. Occupational eosinophilic bronchitis without asthma : an unknown occupational airway disease. J Allergy Clin Immunol 1997; 100 : 852–4. [Google Scholar]
  37. Quirce S, Fernández-Nieto M, de Miguel J, Sastre J. Chronic cough due to latex-induced eosinophilic bronchitis. J Allergy Clin Immunol 2001; 108 : 143. [Google Scholar]
  38. Krakowiak AM, Dudek W, Ruta U, Palczynski C. Occupational eosinophilic bronchitis without asthma due to chloramine exposure. Occup Med (Lond) 2005; 55 : 396–8. [Google Scholar]
  39. Quirce S. Eosinophilic bronchitis in the workplace. Curr Opin Allergy Clin Immunol 2004; 4 : 87–91. [Google Scholar]
  40. Paggiaro PL, Vagaggini B, Bacci E, et al. Prognosis of occupational asthma. Eur Respir J 1994; 7 : 761–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.