Free Access
Med Sci (Paris)
Volume 22, Number 1, Janvier 2006
Page(s) 10 - 13
Section Nouvelles
Published online 15 January 2006
  1. Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000; 13 : 60–9. [Google Scholar]
  2. Busca R, Bertolotto C, Ortonne JP, Ballotti R. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J Biol Chem 1996; 271 : 31824–30. [Google Scholar]
  3. Englaro W, Rezzonico R, Durand-Clément M, et al. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J Biol Chem 1995; 270 : 24315–20. [Google Scholar]
  4. Busca R, Abbe P, Mantoux F, et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 2000; 19 : 2900–10. [Google Scholar]
  5. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417 : 949–54. [Google Scholar]
  6. Goding CR. Mitf from neural crest to melanoma : signal transduction and transcription in the melanocyte lineage. Genes Dev 2000; 14 : 1712–28. [Google Scholar]
  7. Bertolotto C, Abbe P, Hemesath TJ, et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 1998; 142 : 827–35. [Google Scholar]
  8. Hodgkinson CA, Moore KJ, Nakayama A, et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993; 74 : 395–404. [Google Scholar]
  9. Hughes MJ, Lingrel JB, Krakowski JM, Anderson KP. A helix-loop-helix transcription factor-like gene is located at the mi locus. J Biol Chem 1993; 268 : 20687–90. [Google Scholar]
  10. Moreilhon C, Gras D, Hologne C, et al. Live Staphylococcus aureus and bacterial soluble factors induce different transcriptional responses in human airway cells. Physiol Genom 2005; 20 : 244–55. [Google Scholar]
  11. Semenza GL, Involvement of hypoxia-inducible factor 1 in human cancer. Ann Intern Med 2002; 41 : 79–83. [Google Scholar]
  12. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3 : 721–32. [Google Scholar]
  13. Berra E, Benizri E, Ginouves A, et al. HIF proly-lhydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22 : 4082–90. [Google Scholar]
  14. Brahimi-Horn C, Berra E, Pouyssegur J. Hypoxia : the tumor’s gateway to progression along the angiogenic pathway. Trends Cell Biol 2001; 11 : S32–6. [Google Scholar]
  15. Brahimi-Horn C, Mazure CN, Pouyssegur J. Signaling via the hypoxia-inducible factor-1alpha requires multiple post-translational modifications. Cell Signal 2005; 17 : 1–9. [Google Scholar]
  16. Semenza G. Hypoxia-inducible factor 1 : oxygen homeostasis and disease pathology. Trends Mol Mec 2001; 8 : 345–50. [Google Scholar]
  17. Garraway L, Windlund H, Rubin M, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436 : 117–22. [Google Scholar]
  18. Buscà R, Berra E, Gaggioli C, et al. Hypoxia inducible factor 1alpha is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J Cell Biol 2005; 170 : 49–59. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.