Free Access
Issue
Med Sci (Paris)
Volume 21, Number 8-9, Août–Septembre 2005
Page(s) 692 - 694
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2005218-9692
Published online 15 August 2005
  1. Chavrier P, Goud B. The role of ARF and rab GTPases in membrane transport. Curr Opin Cell Biol 1999; 11 : 466–75. [Google Scholar]
  2. Donaldson JG, Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 2000; 12 : 475–82. [Google Scholar]
  3. Antonny B. Contrôle de l’assemblage des manteaux protéiques COPI par les petites protéines G Arf et Sar. Med Sci (Paris) 2002; 18 : 1012–6. [Google Scholar]
  4. Bonifacino JS, Lippincott-Schwartz J. Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 2003; 4 : 409–14. [Google Scholar]
  5. Stamnes M. Regulating the actin cytoskeleton during vesicular transport. Curr Opin Cell Biol 2002; 14 : 428–33. [Google Scholar]
  6. Carreno S, Engqvist-Goldstein AE, Zhang CX, et al. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J Cell Biol 2004; 165 : 781–8. [Google Scholar]
  7. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420 : 629–35. [Google Scholar]
  8. Qualmann B, Mellor H. Regulation of endocytic traffic by Rho GTPases. Biochem J 2003; 371 : 233–41. [Google Scholar]
  9. Camera P, Da Silva JS, Griffiths G, et al. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol 2003; 5 : 1071–8. [Google Scholar]
  10. Musch A, Cohen D, Kreitzer G, Rodriguez-Boulan E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J 2001; 20 : 2171–9. [Google Scholar]
  11. Luna A, Matas OB, Martinez-Menarguez JA, et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell 2002; 13 : 866–79. [Google Scholar]
  12. Matas OB, Martinez-Menarguez JA, Egea G. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic 2004; 5 : 838–46. [Google Scholar]
  13. Wu WJ, Erickson JW, Lin R, Cerione RA. The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 2000; 405 : 800–4. [Google Scholar]
  14. Chen JL, Lacomis L, Erdjument-Bromage H, et al. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett 2004; 566 : 281–6. [Google Scholar]
  15. Dubois T, Paleotti O, Mironov AA, et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol 2005; 7 : 353–64. [Google Scholar]
  16. Basseres DS, Tizzei EV, Duarte AA, et al. ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein. Biochem Biophys Res Commun 2002; 294 : 579–85. [Google Scholar]
  17. Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 2003; 1603 : 47–82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.