Free Access
Issue |
Med Sci (Paris)
Volume 21, Number 5, Mai 2005
|
|
---|---|---|
Page(s) | 503 - 506 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2005215503 | |
Published online | 15 May 2005 |
- Civin CL, Strauss LC, Brovall C, et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984; 133 : 157–65. [Google Scholar]
- Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90 : 5002–12. [Google Scholar]
- Salven P, Mustjoki S, Alitalo R, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101 : 168–72. [Google Scholar]
- Baumhueter S, Dybdal N, Kyle C, Lasky LA. Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin. Blood 1994; 84 : 2554–65. [Google Scholar]
- Tavian M, Coulombel L, Luton D, et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 1996; 87 : 67–72. [Google Scholar]
- Trempus CS, Morris RJ, Bortner CD, et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 2003; 120 : 501–11. [Google Scholar]
- Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal cells derived from adult bone marrow. Nature 2002; 418 : 41–9. [Google Scholar]
- Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105 : 369–77. [Google Scholar]
- Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3 : 1337–45. [Google Scholar]
- Okuno Y, Iwasaki H, Huettner CS, et al. Differential regulation of the human and murine CD34 genes in hematopoietic stem cells. Proc Natl Acad Sci USA 2002; 99 : 6246–51. [Google Scholar]
- Ito T, Tajima F, Ogawa M. Developmental changes of CD34 expression by murine hematopoietic stem cells. Exp Hematol 2000; 28 : 1269–73. [Google Scholar]
- Okuno Y, Huettner CS, Radomska HS, et al. Distal elements are critical for human CD34 expression in vivo. Blood 2002; 100 : 4420–6. [Google Scholar]
- Sassetti C, Van Zante A, Rosen SD. Identification of endoglycan, a member of the CD34/podocalyxin family of sialomucins. J Biol Chem 2000; 275 : 9001–10. [Google Scholar]
- Felschow D, McVeigh ML, Hoehn GT. The adpater protein CrkL associates with CD34. Blood 2001; 97 : 3768–75. [Google Scholar]
- Tada J, Omine M, Suda T, Yamaguchi N. A common signaling pathway via Syk and Lyn tyrosine kinases generated from capping of the sialomucins CD34 and CD43 in immature hematopoietic cells. Blood 1999; 93 : 3723–35. [Google Scholar]
- Baumhueter S, Singer MS, Henzel W, et al. Binding of L-selectin to the vascular sialomucin CD34. Science 1993; 262 : 436–8. [Google Scholar]
- Puri KD, Finger EB, Gaudernack G, Springer TA. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J Cell Biol 1995; 131 : 261–70. [Google Scholar]
- Hiraoka N, Petryniak B, Nakayama J, et al. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 1999; 11 : 79–89. [Google Scholar]
- van Zante A, Gauguet JM, Bistrup A, et al. Lymphocyte-HEV interactions in lymph nodes of a sulfotransferase-deficient mouse. J Exp Med 2003; 198 : 1289–300. [Google Scholar]
- Traoré Y, Hirn J. Certain anti-CD34 monoclonal antibodies induce homotypic adhesion of leukemic cell lines in a CD18-dependent and a CD19-independent way. Eur J Immunol 1994; 24 : 2304–11. [Google Scholar]
- Cheng J, Baumhueter S, Cacalano G, et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 1996; 87 : 479–90. [Google Scholar]
- Suzuki A, Andrew DP, Gonzalo JA, et al. CD34-deficient mice have reduced eosinophil accumulation after allergen exposure and show a novel crossreactive 90-kDa protein. Blood 1996; 87 : 3550–62. [Google Scholar]
- Doyonnas R, Kershaw DB, Duhme C, et al. Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med 2001; 194 : 13–27. [Google Scholar]
- Drew E, Merzaban JS, Seo W, et al. CD34 and CD43 inhibit mast cell adhesion and are required for optimal mast cell reconstitution. Immunity 2005; 22 : 43–57. [Google Scholar]
- Andrews RG, Bryant AM, Bartelmez SH, et al. CD34+ marrow cells devoid of T and B lymphocytes reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood 1992; 80 : 1693–701. [Google Scholar]
- Chabannon C, Cornetta K, Lotz JP, et al. High-dose chemotherapy followed by reinfusion of selected CD34+ peripheral blood cells in patients with poor-prognosis breast cancer : a randomized multicenter study. Br J Cancer 1998; 78 : 913–21. [Google Scholar]
- Stewart AK, Vescio R, Schiller G, et al. Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma : results of a multicenter randomized controlled trial. J Clin Oncol 2001; 19 : 3771–9. [Google Scholar]
- Urbano-Ispizua A, Rozman C, Pimentel P, et al. The number of donor CD3+ cells is the most important factor for graft failure after allogeneic transplantation of CD34+ selected cells from peripheral blood from HLA-identical siblings. Blood 2001; 97 : 383–7. [Google Scholar]
- Chabannon C. Le transfert incertain de la science vers la médecine : l’exemple des sytèmes de sélection de cellules CD34+. Med Sci (Paris) 1998; 14 : 183–7. [Google Scholar]
- Reiffers J, Cailliot C, Dazey B, et al. Abrogation of post myeloablative chemotherapy neutropenia by ex vivo expanded autologous CD34 cells. Lancet 1999; 354 : 1092–3. [Google Scholar]
- Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res 2001; 61 : 6451–8. [Google Scholar]
- Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combine immunodeficiency (SCID)-X1 disease. Science 2000; 288 : 669–72. [Google Scholar]
- Bensinger W, Appelbaum F, Rowley S, et al. Factors that influence collection and engraftment of autologous peripheral blood stem cells. J Clin Oncol 1995; 13 : 2547–55. [Google Scholar]
- Migliaccio AR, Adamson JW, Stevens CE, et al. Cell dose and speed of engraftment in placental/umbilical cord blood transplantation : graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 2000; 96 : 2717–22. [Google Scholar]
- Kanda Y, Hamaki T, Yamamoto R, et al. The clinical significance of CD34 expression in response to therapy of patients with acute myeloid leukemia : an overview of 2483 patients from 22 studies. Cancer 2000; 88 : 2529–33. [Google Scholar]
- Maynadie M, Gerland L, Aho S, et al. Clinical value of the quantitative expression of the three epitopes of CD34 in 300 cases of acute myeloid leukemia. Haematologica 2002; 87 : 795–803. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.