Free Access
Med Sci (Paris)
Volume 20, Number 12, Décembre 2004
Page(s) 1119 - 1124
Section M/S revues
Published online 15 December 2004
  1. Brenner FW, Villar RG, Angulo FJ, et al. Salmonella nomenclature. J Clin Microbiol 2000; 38 : 2465–7. [Google Scholar]
  2. Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function. Nature 2003; 422 : 775–81. [Google Scholar]
  3. Jack RS, Fan X, Bernheiden M, et al. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 1997; 389 : 742–5. [Google Scholar]
  4. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immulno 2002; 23 : 301–4. [Google Scholar]
  5. Vogel SN, Hansen CT, Rosenstreich DL. Characterization of a congenitally LPS-resistant, athymic mouse strain. J Immunol 1979; 122 : 619–22. [Google Scholar]
  6. O’Brien AD, Rosenstreich DL, Scher I, et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 1980; 124 : 20–4. [Google Scholar]
  7. Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 2002; 3 : 121–6. [Google Scholar]
  8. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282 : 2085–8. [Google Scholar]
  9. Qureshi ST, Larivière L, Leveque G, et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999; 189 : 615–25. [Google Scholar]
  10. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21 : 335–76. [Google Scholar]
  11. Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leuk Biol 2003; 74 : 479–85. [Google Scholar]
  12. Uematsu S, Matsumoto M, Takeda K, Akira S. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol 2002; 168 : 5811–6. [Google Scholar]
  13. Yamamoto M, Sato S, Mori K, et al. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 2002; 169 : 6668–72. [Google Scholar]
  14. Doyle SE, O’Connell RM, Miranda GA, et al. Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 2004; 199 : 81–90. [Google Scholar]
  15. Picard C, Puel A, Bonnet M, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003; 299 : 2076–9. [Google Scholar]
  16. Jain A, Ma CA, Liu S, et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001; 2 : 223–8. [Google Scholar]
  17. Courtois G, Smahi A, Reichenbach J, et al. A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 2003; 112 : 1108–15. [Google Scholar]
  18. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410 : 1099–103. [Google Scholar]
  19. Gewirtz AT, Navas TA, Lyons S, et al. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001; 167 : 1882–5. [Google Scholar]
  20. Sebastiani G, Leveque G, Larivière L, et al. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 2000; 64 : 230–40. [Google Scholar]
  21. Vidal S, Tremblay ML, Govoni G, et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 1995; 182 : 655–66. [Google Scholar]
  22. Cellier P, Gros P. The Nramp family. New York : Landes Bioscience, 2004 : 194 p. [Google Scholar]
  23. Brumell JH, Perrin AJ, Goosney DL, Finlay BB. Microbial pathogenesis: new niches for Salmonella. Curr Biol 2002; 12 : R15–7. [Google Scholar]
  24. Jabado N, Jankowski A, Dougaparsad S, et al. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 2000; 192 : 1237–48. [Google Scholar]
  25. Vazquez-Torres A, Fang FC. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol 2001; 9 : 29–33. [Google Scholar]
  26. Pollock JD, Williams DA, Gifford MA, et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 1995; 9 : 202–9. [Google Scholar]
  27. Morel F, Doussiere J, Vignais PV. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 1991; 201 : 523–46. [Google Scholar]
  28. Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leuk Biol 1993; 54 : 171–8. [Google Scholar]
  29. Uchiya K, Barbieri MA, Funato K, et al. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 1999; 18 : 3924–33. [Google Scholar]
  30. Vazquez-Torres A, Xu Y, Jones-Carson J, et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 2000; 287 : 1655–8. [Google Scholar]
  31. Chakravortty D, Hansen-Wester I, Hensel M. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 2002; 195 : 1155–66. [Google Scholar]
  32. Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999; 286 : 113–7. [Google Scholar]
  33. Salzman NH, Ghosh D, Huttner KM, et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003; 422 : 522–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.