Free Access
Issue
Med Sci (Paris)
Volume 20, Number 12, Décembre 2004
Page(s) 1068 - 1070
Section Nouvelles
DOI https://doi.org/10.1051/medsci/200420121068
Published online 15 December 2004
  1. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia : New insights in pathogenesis and treatment. J Clin Invest 2003; 111 : 1795–803. [Google Scholar]
  2. Hunt SC, Hopkins PN, Bulka K, et al. Genetic localization to chromosome 1p32 of the third locus for familial hypercholesterolemia in a Utah kindred. Arterioscler Thromb Vasc Biol 2000; 20 : 1089–93. [Google Scholar]
  3. Varret M, Rabes JP, Saint-Jore B, et al. Third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet 1999; 64 : 1378–87. [Google Scholar]
  4. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34 : 154–6. [Google Scholar]
  5. Timms KM, Wagner S, Samuels ME, et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet 2004; 114 : 349–53. [Google Scholar]
  6. Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 2004; 65 : 419–22. [Google Scholar]
  7. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1) : Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 2003; 100 : 928–33. [Google Scholar]
  8. Maxwell KN, Soccio RE, Duncan EM, et al. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res 2003; 44 : 2109–19. [Google Scholar]
  9. Horton JD, Shah NA, Warrington JA, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA 2003; 100 : 12027–32 [Google Scholar]
  10. Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2004; 24 : 1–6. [Google Scholar]
  11. Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci USA 2004; 101 : 7100–5. [Google Scholar]
  12. Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants : zymogen cleavage and effects on the LDLR and LDL-cholesterol. J Biol Chem 2004 (sous presse). [Google Scholar]
  13. Ouguerram K, Chetiveaux M, Zair Y, et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol 2004; 24 : 1448–53. [Google Scholar]
  14. Park SW, Moon YA, Horton JD. Post-transcriptional regulation of LDL receptor protein by proprotein convertase subtilisin/kexin type 9a (PCSK9) in mouse liver. J Biol Chem 2004 (sous presse). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.