Free Access
Issue |
Med Sci (Paris)
Volume 20, Number 11, Novembre 2004
|
|
---|---|---|
Page(s) | 980 - 985 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/20042011980 | |
Published online | 15 November 2004 |
- Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001; 81 : 239–97. [Google Scholar]
- Brown EM, Camba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993; 366 : 575–80. [Google Scholar]
- Ruat M, Molliver ME, Snowman AM, Snyder SH. Calcium sensing receptor : molecular cloning in rat and localization to nerve terminals. Proc Natl Acad Sci USA 1995; 92 : 3161–5. [Google Scholar]
- Kunishima N, Schimada Y, Tsuji Y, et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000; 407 : 971–7. [Google Scholar]
- Pin JP, Galvez T, Prezeau L. Evolution, structure and activation mechanism of family 3/C G-protein-coupled receptors. Ther Pharmacol 2003; 98 : 325–54. [Google Scholar]
- Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993; 75 : 1297–303. [Google Scholar]
- Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet 1994; 8 : 303–7. [Google Scholar]
- Hu J, Spiegel AM. Naturally occurring mutations of the extracellular Ca2+-sensing receptor : implications for its structure and function. Trends Endocrinol Metab 2003; 14 : 282–8. [Google Scholar]
- Shoback D, Thatcher J, Leombruno R, Brown E. Effects of extracellular Ca++ and Mg++ on cytosolic Ca++ and PTH release in dispersed bovine parathyroid cells. Endocrinology 1983; 113 : 424–6. [Google Scholar]
- Ruat M, Snowman AM, Hester LD, Snyder SH. Cloned and expressed rat Ca2+-sensing receptor. J Biol Chem 1996; 271 : 5972–5. [Google Scholar]
- Zhang Z, Sun S, Quinn SJ, et al. The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J Biol Chem 2001; 2000 : 7. [Google Scholar]
- Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004; 350 : 459–68. [Google Scholar]
- Ye CP, Ho-Pao Cl, Kanazirska M, et al. Amyloid-beta proteins activate Ca2+-permeable annels through calcium-sensing receptors. J Neurosci Res 1997; 7 : 547–54. [Google Scholar]
- Conigrave AD, Quinn SJ, Brown EM. L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci USA 2000; 97 : 4814–9. [Google Scholar]
- Zhang Z, Qiu W, Quinn SJ, et al. Three adjacent serines in the extracellular domains of the CaR are required for L-amino acid-mediated potentiation of receptor function. J Biol Chem 2002; 277 : 33727–35. [Google Scholar]
- Ferry S, Traiffort E, Stinnakre J, Ruat M. Developmental and adult expression of rat calcium-sensing receptor transcripts in neurons and oligodendrocytes. Eur J Neurosci 2000; 12 : 872–84. [Google Scholar]
- Nemeth EF. Pharmacological regulation of parathyroid hormone secretion. Curr Pharm Des 2002; 8 : 2077–87. [Google Scholar]
- Ferry S, Chatel B, Dodd RH, et al. Effects of divalent cations and of a calcimimetic on adrenocorticotropic hormone release in pituitary tumor cells. Biochem Biophys Res Commun 1997; 238 : 866–73. [Google Scholar]
- Nemeth EF, Steffey ME, Hammerland LG, et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 1998; 95 : 4040–45. [Google Scholar]
- Petrel C, Kessler A, Dauban P, et al. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 2004; 279 : 18990–7. [Google Scholar]
- Gowen M, Stroup GB, Dodds RA, et al. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 2000; 105 : 1595–604. [Google Scholar]
- Petrel C, Kessler A, Malash F, et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca2+-sensing receptor. J Biol Chem 2003; 278 : 49487–94. [Google Scholar]
- Nemeth EF,Delmar EG, Heaton WL, et al. Calcilytic compounds: Potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther 2001; 299 : 323–31. [Google Scholar]
- Seeman E, Delmas PD. Reconstructing the skeleton with intermittent parathyroid hormone. Trends Endocrinol Metab 2001; 12 : 281–3. [Google Scholar]
- Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin : a G protein-coupled receptor. Science 2000; 289 : 739–45. [Google Scholar]
- Miedlich SU, Gama l, Seuwen K, et al. Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J Biol Chem 2004; 279 : 7254–63. [Google Scholar]
- Ray K, Northup J. Evidence for distinct cation and calcimimetic compound (NPS 568) recognition domains in the transmembrane regions of the human Ca2+ receptor. J Biol Chem 2002; 277 : 18908–13. [Google Scholar]
- Hu J, Reyes-Cruz G, Chen W, et al. Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+ and a positive allosteric modulator. J Biol Chem 2002; 277 : 46622–31. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.