Free Access
Med Sci (Paris)
Volume 20, Number 8-9, Août-Septembre 2004
Page(s) 793 - 798
Section M/S revues
Published online 15 August 2004
  1. Dodé C, Levilliers J, Dupont J-M, et al. FGFR1 loss-of-function mutations cause autosomal dominant Kallmann syndrome. Nature Genet 2003; 33 : 463–5. [Google Scholar]
  2. Naftolin F, Harris GW, Bobrow M. Effect of purified luteinizing hormone releasing factor on normal and hypogonadotropic anosmic men. Nature 1971; 232 : 496–7. [Google Scholar]
  3. De Morsier G. Etudes sur les dysraphies crânio-encéphaliques. 1. Agénésie des lobes olfactifs (telencephaloschizis latéral) et des commissures calleuse et antérieure (telencephaloschizis médian). La dysplasie olfacto-génitale. Schweiz Arch Neurol Psychiat 1954; 74 : 309–61. [Google Scholar]
  4. Hardelin J-P. Kallmann syndrome : Towards molecular pathogenesis. Mol Cell Endocrinol 2001; 179 : 75–81. [Google Scholar]
  5. Kallmann FJ, Schoenfeld WA, Barrera SE. The genetic aspects of primary eunuchoidism. Am J Mental Deficiency 1944; XLVIII : 203–36. [Google Scholar]
  6. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991; 353 : 529–36. [Google Scholar]
  7. Legouis R, Hardelin J-P, Levilliers J, et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 1991; 67 : 423–35. [Google Scholar]
  8. Ballabio A, Andria G. Deletions and translocations involving the distal short arm of the human X chromosome : Review and hypotheses. Hum Mol Genet 1992; 1 : 221–7. [Google Scholar]
  9. Hardelin J-P, Levilliers J, Blanchard S, et al. Heterogeneity in the mutations responsible for X chromosome-linked Kallmann syndrome. Hum Mol Genet 1993; 2 : 373–7. [Google Scholar]
  10. Dodé C, Hardelin J-P. Kallmann syndrome : FGF-signalling insufficiency ? J Mol Med 2004; sous presse. [Google Scholar]
  11. Oliveira LMB, Seminara SB, Beranova M, et al. The importance of autosomal genes in Kallmann syndrome : Genotype-phenotype correlations and neuroendocrine characteristics. J Clin Endocrinol Metab 2001; 86 : 1532–8. [Google Scholar]
  12. Hardelin J-P, Julliard AK, Moniot B, et al. Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis : Implications for the developmental anomalies of X chromosome-linked Kallmann syndrome. Dev Dyn 1999; 215 : 26–44. [Google Scholar]
  13. Carrel L, Cottle AA, Goglin KC, Willard HF. A first-generation X-inactivation profile of the human X chromosome. Proc Natl Acad Sci USA 1999; 96 : 14440–44. [Google Scholar]
  14. Hébert JM, Partanen J, Rossant J, McConnell SK. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 2003; 130 : 1101–11. [Google Scholar]
  15. Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature 1989; 338 : 161–4. [Google Scholar]
  16. Schwanzel-Fukuda M, Crossin KL, Pfaff DW, et al. Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 1996; 366 : 547–57. [Google Scholar]
  17. Schwanzel-Fukuda M, Pfaff DW. The structure and function of the nervus terminalis. In : Doty RL, ed. The handbook of clinical olfaction and taste. New York : Dekker, 1995; 835–64. [Google Scholar]
  18. Schwanzel-Fukuda M, Bick D, Pfaff DW. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 1989; 6 : 311–26. [Google Scholar]
  19. Gong Q, Shipley MT. Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb. Neuron 1995; 14 : 91–101. [Google Scholar]
  20. Muenke M, Schell U, Hehr A, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet 1994; 8 : 269–74. [Google Scholar]
  21. Ibrahimi OA, Zhang F, Eliseenkova AV, et al. Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Hum Mol Genet 2004; 13 : 69–78. [Google Scholar]
  22. Mayston MJ, Harrison LM, Quinton R, et al. Mirror movements in X-linked Kallmann’s syndrome. I. A neurophysiological study. Brain 1997; 120 : 1199–216. [Google Scholar]
  23. Bülow HE, Boulin T, Hobert O. Differential functions of the C. elegans FGF receptor in axon outgrowth and maintenance of axon position. Neuron 2004; 42 : 367–74. [Google Scholar]
  24. Soussi-Yanicostas N, de Castro F, Julliard AK, et al. Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 2002; 109 : 217–28. [Google Scholar]
  25. Bülow HE, Berry KL, Topper LH, et al. Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci USA 2002; 99 : 6346–51. [Google Scholar]
  26. Raballo R, Rhee J, Lyn-Cook R, et al. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 2000; 20 : 5012–23. [Google Scholar]
  27. Shin DM, Korada S, Raballo R, et al. Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of Fgfr1 signaling is associated with spontaneous hyperactivity in mice. J Neurosci 2004; 24 : 2247–58. [Google Scholar]
  28. Soussi-Yanicostas N, Hardelin J-P, Arroyo-Jimenez M, et al. Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system. J Cell Sci. 1996; 109 : 1749–57. [Google Scholar]
  29. Bülow HE, Hobert O. Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 2004; 41 : 723–36. [Google Scholar]
  30. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103 : 211–25. [Google Scholar]
  31. Pellegrini L. Role of heparan sulfate in fibroblast growth factor signaling : a structural view. Curr Opin Struct Biol 2001; 11 : 629–34. [Google Scholar]
  32. Kiselyov VV, Skladchikova G, Hinsby AM, et al. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 2003; 11 : 691–701. [Google Scholar]
  33. Schlessinger J. Signal transduction. Autoinhibition control. Science 2003; 300 : 750–52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.