Free Access
Issue
Med Sci (Paris)
Volume 20, Number 6-7, Juin-Juillet 2004
Page(s) 675 - 678
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004206-7675
Published online 15 June 2004
  1. Auger FA. Le génie tissulaire : du rêve à la réalité. Med Sci (Paris) 2000; 16 : 1624–31. [Google Scholar]
  2. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986; 231 : 397–400. [Google Scholar]
  3. L’Heureux N, Germain L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells : A morphologic study. J Vasc Surg 1993; 17 : 499–509. [Google Scholar]
  4. Seliktar D, Black RA, Vito RP, Nerem RM. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 2000; 28 : 351–62. [Google Scholar]
  5. Neidert MR, Lee ES, Oegema TR, Tranquillo RT. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 2002; 23 : 3717–31. [Google Scholar]
  6. Niklason LE, Abbott W, Gao J, et al. Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg 2001; 33 : 628–38. [Google Scholar]
  7. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999; 284 : 489–93. [Google Scholar]
  8. L’Heureux N, Paquet S, Labbe R, et al. A completely biological tissue-engineered human blood vessel. FASEB J 1998; 12 : 47–56. [Google Scholar]
  9. Germain L, Carrier P, Auger FA, et al. Can we produce a human corneal equivalent by tissue engineering ? Prog Retin Eye Res 2000; 5 : 497–527. [Google Scholar]
  10. L’Heureux N, Stoclet JC, Auger FA, et al. A human tissue-engineered vascular media : A new model for pharmacological studies of contractile responses. FASEB J 2001; 15 : 515–24. [Google Scholar]
  11. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001; 9 : 1035–40. [Google Scholar]
  12. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995; 75 : 487–517. [Google Scholar]
  13. Absher M, Woodcock-Mitchell J, Mitchell J, et al. Characterization of vascular smooth muscle cell phenotype in long-term culture. In Vitro Cell Dev Biol 1989; 25 : 183–92. [Google Scholar]
  14. Thyberg J. Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol 1996; 169 : 183–265. [Google Scholar]
  15. Richard S, Neveu D, Carnac G, et al. Differential expression of voltage-gated Ca(2+)-currents in cultivated aortic myocytes. Biochim Biophys Acta 1992; 1160 : 95–104. [Google Scholar]
  16. Bo X, Sexton A, Xiang Z, et al. Pharmacological and histochemical evidence for P2X receptors in human umbilical vessels. Eur J Pharmacol 1998; 353 : 59–65. [Google Scholar]
  17. Davies PF, Barbee KA, Volin MV, et al. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol 1997; 59 : 527–49. [Google Scholar]
  18. Ranjan V, Xiao Z, Diamond SL. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol 1995; 269 : 550–5. [Google Scholar]
  19. Petitclerc E, Levesque L, Grose JH, et al. Pathologic leukocyte infiltration of the rabbit aorta confers a vasomotor effect to chemotactic peptides through cyclooxygenase-derived metabolites. Immunol 1996; 156 : 3426–34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.