Free Access
Issue
Med Sci (Paris)
Volume 20, Number 4, Avril 2004
Page(s) 442 - 447
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004204442
Published online 15 April 2004
  1. Matsumura K, Campbell KP. Dystrophin-glycoprotein complex : its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve 1994; 17 : 2–15. [Google Scholar]
  2. Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82 : 291–329. [Google Scholar]
  3. Engel AG, Yamamoto M, Fishbeck KH. Dystrophinopathies. In : Engel AG, Franzini-Armstrong C, eds. Myology : basic and clinical. New York : McGraw-Hill, 1994 : 1133–97. [Google Scholar]
  4. Gillis JM. Understanding dystrophinopathies : an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J Muscle Res Cell Motil 1999; 20 : 605–25. [Google Scholar]
  5. Turner PR, Westwood T, Regen CM, Steinhardt RA. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 1988; 355 : 735–8. [Google Scholar]
  6. Loufrani L, Matrougui K, Gorny D, et al. Flow (shear stress)-induced endothelium-dependent dilation is altered in mice lacking the gene encoding for dystrophin. Circulation 2001; 103 : 864–70. [Google Scholar]
  7. Rouger K, Le Cunff M, Steenman M, et al. Global/temporal gene expression in diaphragm and hindlimb muscles of dystrophin-deficient (mdx) mice. Am J Physiol Cell Physiol 2002; 283 : C773–84. [Google Scholar]
  8. Bakay M, Zhao P, Chen J, Hoffman EP. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromusc Disord 2002; 12 (suppl 1) : S125–41. [Google Scholar]
  9. Boer JM, de Meijer EJ, Mank EM, et al. Expression profiling in stably regenerating skeletal muscle of dystrophin-deficient mdx mice. Neuromusc Disord 2002; 12 (suppl 1) : S118–24. [Google Scholar]
  10. Tinsley JM, Blake DJ, Roche A, et al. Primary structure of dystrophin-related protein. Nature 1992; 360 : 591–2. [Google Scholar]
  11. Fardeau M, Tomé FMS, Collin H, et al. Présence d’une protéine de type dystrophine au niveau de la jonction neuromusculaire dans la dystrophie musculaire de Duchenne et la souris mutante mdx. CR Acad Sci Paris Ser III 1990; 311 : 197–204. [Google Scholar]
  12. Mizumo Y, Nonaka I, Hirai S, Ozawa E. Reciprocal expression of dystrophin and utrophin in muscles of Duchenne muscular dystrophy patients, female DMD carriers and control subjects. J Neurol Sci 1993; 119 : 43–52. [Google Scholar]
  13. Deconinck AE, Rafael JA, Skinner JA, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997; 90 : 717–27. [Google Scholar]
  14. Deconinck N, Rafael JA, Beckers-Bleukx G, et al. Consequences of the combined deficiency in dystrophin and utrophin on the mechanical properties and myosin composition of limb and respiratory muscles of the mouse. Neuromusc Disord 1998; 8 : 362–70. [Google Scholar]
  15. Tinsley JM, Potter AC, Phelps SR, et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 1996; 384 : 349–53. [Google Scholar]
  16. Deconinck N, Tinsley J, De Backer F, et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 1997; 3 : 1216–21. [Google Scholar]
  17. Goudemant JF, Deconinck N, Tinsley JM, et al. Expression of truncated utrophin improves pH recovery in exercising muscles of dystrophic mdx mice. A 31P NMR study. Neuromusc Disord 1998; 8 : 371–9. [Google Scholar]
  18. Tinsley J, Deconinck N, Fisher R, et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 1998; 4 : 1441–4. [Google Scholar]
  19. Xia B, Hoyte K, Kammesheidt A, et al. Overexpression of the CT GalNAc transferase in skeletal muscle alters myofiber growth, neuromuscular structure, and laminin expression. Dev Biol 2002; 242 : 58–73. [Google Scholar]
  20. Nguyen HH, Jayasinha V, Xia B, et al. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci USA 2002; 99 : 5616–21. [Google Scholar]
  21. Gilbert R, Nalbantoglu J, Petrof BJ, et al. Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum Gene Ther 1999; 10 : 1299–310. [Google Scholar]
  22. Krag TOB, Juel-Jansen C, Hansen-Scwartz J, et al. Heregulin-mediated utrophin upregulation in mdx mice. J Neurol Sci 2002; 199 (suppl 1) : S89. [Google Scholar]
  23. Chaubourt E, Fossier P, Baux G, et al. Nitric oxide and l-arginine cause an accumulation of utrophin at the sarcolemma : a possible compensation for dystrophin loss in Duchenne muscular dystrophy. Neurobiol Dis 1999; 6 : 499–507. [Google Scholar]
  24. Delaporte S, Voisin V, Sébrié C, et al. The increase of utrophin in muscle of mdx mice treated by L-arginine reverses dystrophic phenotype and improves mechanical performance. J Neurol Sci 2002; 199 (suppl 1) : S88. [Google Scholar]
  25. Squire S, Raymackers JM, Vandebrouck C, et al. Prevention of pathology in mdx mice by expression of utrophin : Analysis using an inducible transgenic expression system. Hum Mol Genet 2002; 11 : 3333–44. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.