Free Access
Issue
Med Sci (Paris)
Volume 19, Number 12, Décembre 2003
Page(s) 1271 - 1279
Section Dossier technique
DOI https://doi.org/10.1051/medsci/200319121271
Published online 15 December 2003
  1. Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002; 30 : 1427–64. [Google Scholar]
  2. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment : RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249 : 505–10. [Google Scholar]
  3. Singer BS, Shtatland T, Brown D, Gold L. Libraries for genomic SELEX. Nucleic Acids Res 1997; 25 : 781–6. [Google Scholar]
  4. Stelzl U, Nierhaus KH. SERF : in vitro election of random RNA fragments to identify protein binding sites within large RNAs. Methods 2001; 25 : 351–7. [Google Scholar]
  5. Drolet DW, Jenison RD, Smith DE, Pratt D, Hicke BJ. A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX). Comb Chem High Throughput Screen 1999; 2 : 271–8. [Google Scholar]
  6. Ghisolfi-Nieto L, Joseph G, Puvion-Dutilleul F, Amalric F, Bouvet P. Nucleolin is a sequence-specific RNA-binding protein : characterization of targets on pre-ribosomal RNA. J Mol Biol 1996; 260 : 34–53. [Google Scholar]
  7. Serin G, Joseph G, Faucher C, et al. Localization of nucleolin binding sites on human and mouse pre-ribosomal RNA. Biochimie 1996; 78 : 530–8. [Google Scholar]
  8. Ginisty H, Serin G, Ghisolfi-Nieto L, et al. Interaction of nucleolin with an evolutionarily conserved pre-ribosomal RNA sequence is required for the assembly of the primary processing complex. J Biol Chem 2000; 275 : 18845–50. [Google Scholar]
  9. Tsai DE, Harper DS, Keene JD. U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res 1991; 19 : 4931–6. [Google Scholar]
  10. Katsamba PS, Park S, Laird-Offringa IA. Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods 2002; 26 : 95–104. [Google Scholar]
  11. Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 2001; 107 : 489–99. [Google Scholar]
  12. Tenenbaum SA, Lager PJ, Carson CC, Keene JD. Ribonomics : identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 2002; 26 : 191–8. [Google Scholar]
  13. Brown V, Jin P, Ceman S, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001; 107 : 477–87. [Google Scholar]
  14. Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. Embo J 2001; 20 : 4803–13. [Google Scholar]
  15. Rodgers ND, Jiao X, Kiledjian M. Identifying mRNAs bound by RNA-binding proteins using affinity purification and differential display. Methods 2002; 26 : 115–22. [Google Scholar]
  16. Bachler M, Schroeder R, von Ahsen U. StreptoTag: a novel method for the isolation of RNA-binding proteins. Rna 1999; 5 : 1509–16. [Google Scholar]
  17. Paillard L, Omilli F, Legagneux V, Bassez T, Maniey D, Osborne HB. EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. Embo J 1998; 17 : 278–87. [Google Scholar]
  18. SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA 1996; 93 : 8496–501. [Google Scholar]
  19. Martin F, Schaller A, Eglite S, Schumperli D, Muller B. The gene for histone RNA hairpin binding protein is located on human chromosome 4 and encodes a novel type of RNA binding protein. Embo J 1997; 16 : 769–78. [Google Scholar]
  20. Sagesser R, Martinez E, Tsagris M, Tabler M. Detection and isolation of RNA-binding proteins by RNA-ligand screening of a cDNA expression library. Nucleic Acids Res 1997; 25 : 3816–22. [Google Scholar]
  21. Harada K, Martin SS, Frankel AD. Selection of RNA-binding peptides in vivo. Nature 1996; 380 : 175–9. [Google Scholar]
  22. Jain C, Belasco JG. A structural model for the HIV-1 Rev-RRE complex deduced from altered- specificity rev variants isolated by a rapid genetic strategy. Cell 1996; 87 : 115–25. [Google Scholar]
  23. Bouvet P, Jain C, Belasco JG, Amalric F, Erard M. RNA recognition by the joint action of two nucleolin RNA-binding domains : genetic analysis and structural modeling. Embo J 1997; 16 : 5235–46. [Google Scholar]
  24. Danner S, Belasco JG. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci USA 2001; 98 : 12954–9. [Google Scholar]
  25. Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12 : 1–11. [Google Scholar]
  26. Scherl A, Coute Y, Deon C, et al. Functional proteomic analysis of human nucleolus. Mol Biol Cell 2002; 13 : 4100–9. [Google Scholar]
  27. Dragon F, Gallagher JE, Compagnone-Post PA, et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 2002; 417 : 967–70. [Google Scholar]
  28. Honey S, Schneider BL, Schieltz DM, Yates JR, Futcher B. A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin-CDK complex. Nucleic Acids Res 2001; 29 : E24. [Google Scholar]
  29. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999; 17 : 1030–2. [Google Scholar]
  30. Mendell JT, Dietz HC. When the message goes awry : disease-producing mutations that influence mRNA content and performance. Cell 2001; 107 : 411–4. [Google Scholar]
  31. Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002; 10 : 45–53. [Google Scholar]
  32. Xavier KA, Eder PS, Giordano T. RNA as a drug target: methods for biophysical characterization and screening. Trends Biotechnol 2000; 18 : 349–56. [Google Scholar]
  33. Schlunzen F, Zarivach R, Harms J, et al. A. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 2001; 413 : 814–21. [Google Scholar]
  34. Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics : basic principles and recent applications. Nat Rev Drug Discov 2002; 1 : 503–14. [Google Scholar]
  35. Sullenger BA, Gilboa E. Emerging clinical applications of RNA. Nature 2002; 418 : 252–8. [Google Scholar]
  36. Tanabe T, Kuwabara T, Warashina M, Tani K. Taira K, Asano S. Oncogene inactivation in a mouse model. Nature 2000; 406 : 473–4. [Google Scholar]
  37. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990; 63 : 601–8. [Google Scholar]
  38. Darfeuille F, Arzumanov A, Gryaznov S, Gait MJ, Di Primo C, Toulme JJ. Loop-loop interaction of HIV-1 TAR RNA with N3’—>P5’ deoxyphosphoramidate aptamers inhibits in vitro Tat-mediated transcription. Proc Natl Acad Sci USA 2002; 99 : 9709–14. [Google Scholar]
  39. Ulrich H, Magdesian MH, Alves MJ, Colli W. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem 2002; 277 : 20756–62. [Google Scholar]
  40. Drolet DW, Nelson J, Tucker CE, et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of Rhesus monkeys. Pharm Res 2000; 17 : 1503–10. [Google Scholar]
  41. Rusconi CP, Scardino E, Layzer J, et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 2002; 419 : 90–4. [Google Scholar]
  42. Lawrence D. RNAi could hold promise in the treatment of HIV. Lancet 2002; 359 : 2007. [Google Scholar]
  43. Birney ES, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 1993; 21 : 5803–16. [Google Scholar]
  44. Allain FH, Gilbert DE, Bouvet P, Feigon J. Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target. J Mol Biol 2000; 303 : 227–41. [Google Scholar]
  45. Ginisty H, Amalric F, Bouvet P. Two different combinations of RNA-binding domains determine the RNA binding specificity of nucleolin. J Biol Chem 2001; 276 : 14338–43. [Google Scholar]
  46. De Boulle K, Verkerk AJ, Reyniers E, et al. A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet 1993; 3 : 31–5. [Google Scholar]
  47. Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 2001; 107 : 489–99. [Google Scholar]
  48. Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J 2001; 20 : 4803–13. [Google Scholar]
  49. Ghisolfi L, Joseph G, Amalric F, Erard M. The glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its RNA-helix-destabilizing properties. J Biol Chem 1992; 267 : 2955–9. [Google Scholar]
  50. Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains : conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 1993; 21 : 5803–16. [Google Scholar]
  51. Bouvet P, Diaz JJ, Kindbeiter K, Madjar JJ, Amalric F. Nucleolin interacts with several ribosomal proteins through its RGG domain. J Biol Chem 1998; 273 : 19025–9. [Google Scholar]
  52. Hanakahi LA, Sun H, Maizels N. High affinity interactions of nucleolin with G-G-paired rDNA. J Biol Chem 1999; 274 : 15908–12. [Google Scholar]
  53. Ryter JM, Schultz SC. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 1998; 17 : 7505–13. [Google Scholar]
  54. Ramos A, Grunert S, Adams J, et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J 2000; 19 : 997–1009. [Google Scholar]
  55. Conrad C, Rauhut R. Ribonuclease III: new sense from nuisance. Int J Biochem Cell Biol 2002; 34 : 116–29. [Google Scholar]
  56. Tan R, Frankel AD. Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci USA 1995; 92 : 5282–6. [Google Scholar]
  57. Weiss MA, Narayana N. RNA recognition by arginine-rich peptide motifs. Biopolymers 1998; 48 : 167–80. [Google Scholar]
  58. Campisi DM, Calabro V, Frankel AD. Structure-based design of a dimeric RNA-peptide complex. EMBO J 2001; 20 : 178–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.