Free Access
Issue
Med Sci (Paris)
Volume 19, Number 10, Octobre 2003
Page(s) 981 - 987
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20031910981
Published online 15 October 2003
  1. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000; 12: 13–9. [Google Scholar]
  2. Wright SD. Toll, a new piece in the puzzle of innate immunity. J Exp Med 1999; 189: 605–9. [Google Scholar]
  3. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–80. [Google Scholar]
  4. Muzio M, Polentarutti N, Bosisio D, Prahladan MK, Mantovani A. Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J Leuk Biol 2000; 67: 450–6. [Google Scholar]
  5. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 2000; 12: 20–6. [Google Scholar]
  6. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282: 2085–8. [Google Scholar]
  7. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gramnegative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443–51. [Google Scholar]
  8. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature 2001; 410: 1099–103. [Google Scholar]
  9. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–5. [Google Scholar]
  10. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of doublestranded RNA and activation of NF-κB by Toll- like receptor 3. Nature 2001; 413: 732–8. [Google Scholar]
  11. Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between tolllike receptors. Proc Natl Acad Sci USA 2000; 97: 13766–71. [Google Scholar]
  12. Chu WM, Ostertag D, Li ZW, et al. JNK2 and IKKβ are required for activating the innate response to viral infection. Immunity 1999; 11: 721–31. [Google Scholar]
  13. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 1999; 284: 309–13. [Google Scholar]
  14. Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 1999; 284: 316–20. [Google Scholar]
  15. Lacroix S, Feinstein D, Rivest S. The bacterial endotoxin lipopolysaccharide has the ability to target the brain in up regulating its membrane CD14 receptor within specific cellular populations. Brain Pathol 1998; 8: 625–40. [Google Scholar]
  16. Laflamme N, Rivest S. Tolllike receptor 4: the missing link of the cerebral innate immune response triggered by circulating gramnegative bacterial cell wall components. FASEB J 2001; 15: 155–63. [Google Scholar]
  17. Brochu S, Olivier M, Rivest S. Neuronal activity and transcription of proinflammatory cytokines, IκBα, and iNOS in the mouse brain during acute endotoxemia and chronic infection with Trypanosoma brucei brucei. J Neurosci Res 1999; 57: 801–16. [Google Scholar]
  18. Nadeau S, Rivest S. Regulation of the gene encoding tumor necrosis factor α (TNF-α) in the rat brain and pituitary in response in different models of systemic immune challenge. J Neuropathol Exp Neurol 1999; 58: 61–77. [Google Scholar]
  19. Nadeau S, Rivest S. Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor κ B activity in the brain during endotoxemia. J Neurosci 2000; 20: 3456–68. [Google Scholar]
  20. Nadeau S, Rivest S. The complement system is an integrated part of the natural innate immune response in the brain. FASEB J 2001; 15: 1410–2. [Google Scholar]
  21. Quan N, Whiteside M, Herkenham M. Time course and localization patterns of interleukin-1β messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 1998; 83: 281–93. [Google Scholar]
  22. Thibeault I, Laflamme N, Rivest S. Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 2001; 434: 461–77. [Google Scholar]
  23. Zekki H, Feinstein DL, Rivest S. The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding tolllike receptor 2 and CD14 in the mouse CNS. Brain Pathol 2002; 12: 308–19. [Google Scholar]
  24. Nguyen MD, Julien JP, Rivest S. Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin- 1β in neurodegeneration. Ann Neurol 2001; 50: 630–9. [Google Scholar]
  25. Nadeau S, Rivest S. Endotoxemia prevents the cerebral inflammatory wave induced by intraparenchymal lipopolysaccharide injection: role of glucocorticoids and CD14. J Immunol 2002; 169: 3370–81. [Google Scholar]
  26. Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 1998; 70: 1584–92. [Google Scholar]
  27. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharideinduced neurotoxicity in the rat brain: role of microglia. J Neurosci 2000; 20: 6309–16. [Google Scholar]
  28. Eklind S, Mallard C, Leverin AL, et al. Bacterial endotoxin sensitizes the immature brain to hypoxic—ischaemic injury. Eur J Neurosci 2001; 13: 1101–6. [Google Scholar]
  29. Herx LM, Rivest S, Yong VW. Central nervous systeminitiated inflammation and neurotrophism in trauma: IL-1β is required for the production of ciliary neurotrophic factor. J Immunol 2000; 165: 2232–9. [Google Scholar]
  30. Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H. Regional and cellular codistribution of interleukin 1β and nerve growth factor mRNA in the adult rat brain: possible relationship to the regulation of nerve growth factor synthesis. J Cell Biol 1990; 111: 1701–11. [Google Scholar]
  31. DeKosky ST, Styren SD, O’Malley ME, et al. Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain. Ann Neurol 1996; 39: 123–7. [Google Scholar]
  32. Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1β promotes repair of the CNS. J Neurosci 2001; 21: 7046–52. [Google Scholar]
  33. Venters HD, Tang Q, Liu Q, VanHoy RW, Dantzer R, Kelley KW. A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc Natl Acad Sci USA 1999; 96: 9879–84. [Google Scholar]
  34. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 2001; 4: 1116–22. [Google Scholar]
  35. Pouly S, Becher B, Blain M, Antel JP. Interferon-γ modulates human oligodendrocyte susceptibility to Fasmediated apoptosis. J Neuropathol Exp Neurol 2000; 59: 280–6. [Google Scholar]
  36. Nguyen MD, Julien JP, RivestS. Innate immunity: the missing link in neuroprotection and neurodegeneration ? Nat Rev Neurosci 2002; 3: 216–27. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.