Free Access
Med Sci (Paris)
Volume 19, Number 10, Octobre 2003
Page(s) 1003 - 1010
Section M/S Revues
Published online 15 October 2003
  1. Zhao M, Song B, Pu J, Forrester JV, McCaig CD. Direct visualization of a stratified epithelium reveals that wounds heal by unified sliding of cell sheets. FASEB J 2003; 17: 397–406. [Google Scholar]
  2. Falanga V, Grinnel F, Gilchrest B, Maddox YT, Moshell A. Experimental approaches to chronic wounds. Wound Repair Regen 1995; 3: 132–40. [Google Scholar]
  3. Garlick JA, Taichman LB. Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab Invest 1994; 70: 916–24. [Google Scholar]
  4. Genever PG, Cunliffe WJ, Wood EJ. Influence of the extracellular matrix on fibroblast responsiveness to phenytoin using in vitro wound healing models. Br J Dermatol 1995; 133: 231–5. [Google Scholar]
  5. Jansson K, Kratz G, Haegerstrand A. Characterization of a new in vitro model for studies of reepithelialization in human partial thickness wounds. In Vitro Cell Dev Biol Anim 1996; 32: 534–40. [Google Scholar]
  6. O’Leary R, Arrowsmith M, Wood EJ. The use of an in vitro wound healing model, the tri-layered skin equivalent, to study the effects of cytokines on the repopulation of the wound defect by fibroblasts and keratinocytes. Biochem Soc Trans 1997; 25: 369S. [Google Scholar]
  7. Stephens P, Wood EJ, Raxworthy MJ. Development of a multilayered in vitro model for studying events associated with wound healing. Wound Repair Regen 1996; 4: 393–401. [Google Scholar]
  8. Buck RC. Cell migration in repair of mouse corneal epithelium. Invest Ophthalmol Vis Sci 1979; 18: 767–84. [Google Scholar]
  9. Ortonne JP, Loning T, Schmitt D. Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing. Virchows Arch 1981; 392: 217–30. [Google Scholar]
  10. Laplante A, Germain L, Auger F, Moulin V. Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to longstanding questions. FASEB J 2001; 15: 2377–89. [Google Scholar]
  11. Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim 1999; 35: 318–26. [Google Scholar]
  12. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci USA 1992; 89: 6896–900. [Google Scholar]
  13. Auger FA, Pouliot R, Tremblay N, et al. Multistep production of bioengineered skin substitutes: sequential modulation of culture conditions. In Vitro Cell Dev Biol Anim 2000; 36: 96–103. [Google Scholar]
  14. Coulomb B, Lebreton C, Dubertret L. Influence of human dermal fibroblasts on epidermalization. J Invest Dermatol 1989; 92: 122–5. [Google Scholar]
  15. Moulin V, Auger FA, Garrel D, Germain L. Role of wound healing myofibroblasts on reepithelialization of human skin. Burns 2000; 26: 3–12. [Google Scholar]
  16. Bouvard V, Germain L, Rompre P, Roy B, Auger FA. Influence of dermal equivalent maturation on a skin equivalent development. Biochem Cell Biol 1992; 70: 34–42. [Google Scholar]
  17. Matsue H, Cruz PD, Jr., Bergstresser PR, Takashima A. Cytokine expression by epidermal cell subpopulations. J Invest Dermatol 1992; 99: 42S- 5S. [Google Scholar]
  18. Tavakkol A, Elder JT, Griffiths CEM, et al. Expression of growth hormone receptor, insulinlike growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J Invest Dermatol 1992; 99: 343–9. [Google Scholar]
  19. Phan TT, Lim IJ, Bay BH, et al. Role of IGF system of mitogens in the induction of fibroblast proliferation by keloid-derived keratinocytes in vitro. Am J Physiol Cell Physiol 2003; 284: C860–9. [Google Scholar]
  20. Kratz G, Haegerstrand A, Dalsgaard C-J. Conditioned medium from cultured human keratinocytes has growth stimulatory properties on different human cell types. J Invest Dermatol 1991; 97: 1039–43. [Google Scholar]
  21. Palmieri C, Roberts-Clark D, Assadi-Sabet A, et al. Fibroblast growth factor 7, secreted by breast fibroblasts, is an interleukin-1beta-induced paracrine growth factor for human breast cells. J Endocrinol 2003; 177: 65–81. [Google Scholar]
  22. Goulet F, Poitras A, Rouabhia M, Cusson D, Germain L, Auger FA. Stimulation of human keratinocyte proliferation through growth factor exchanges with dermal fibroblasts in vitro. Burns 1996; 22: 107–12. [Google Scholar]
  23. Rheinwald JG, Green H. Cell serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975; 6: 331–43. [Google Scholar]
  24. Wang CS, Goulet F, Lavoie J, et al. Establishment and characterization of a new cell line derived from a human primary breast carcinoma. Cancer Genet Cytogenet 2000; 120: 58–72. [Google Scholar]
  25. Wang CS, Goulet F, Tremblay N, Germain L, Auger FA, Têtu B. Selective culture of epithelial cells from primary breast carcinomas using irradiated 3T3 cells as feeder layer. Pathol Res Pract 2001; 197: 175–81. [Google Scholar]
  26. Wang CS, Goulet F, Auger F, Tremblay N, Germain L, Tetu B. Production of bioengineered cancer tissue constructs in vitro: epithelium-mesenchyme heterotypic interactions. In Vitro Cell Dev Biol Anim 2001; 37: 434–9. [Google Scholar]
  27. Berthod F, Germain L, Li H, Xu W, Damour O, Auger FA. Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol 2001; 20: 463–73. [Google Scholar]
  28. Warburg E. Versuche an überlebendem carcinomgewebe. Biochem Stschr 1923; 142: 317–33. [Google Scholar]
  29. Boyce ST, Supp AP, Harriger MD, Greenhalgh DG, Warden GD. Topical nutrients promote engraftment and inhibit wound contraction of cultured skin substitutes in athymic mice. J Invest Dermatol 1995; 104: 345–9. [Google Scholar]
  30. Young DM, Greulich KM, Weier HG. Species-specific in situ hybridization with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. J Burn Care Rehabil 1996; 17: 305–10. [Google Scholar]
  31. Supp DM, Wilson-Landy K, Boyce ST. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J 2002; 16: 797–804. [Google Scholar]
  32. Berthod F, Sahuc F, Hayek D, Damour O, Collombel C. Deposition of collagen fibril bundles by long-term culture of fibroblasts in a collagen sponge. J Biomed Mater Res 1996; 32: 87–94. [Google Scholar]
  33. Berthod F, Germain L, Guignard R, et al. Differential expression of collagens XII and XIV in human skin and in reconstructued skin. J Invest Dermatol 1997; 108: 737–42. [Google Scholar]
  34. Black AF, Berthod F, L’Heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 1998; 12: 1331–40. [Google Scholar]
  35. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 61: 1329–37. [Google Scholar]
  36. Lavker RM, Sun T-T. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science 1982; 215: 1239–41. [Google Scholar]
  37. Michel M, Török N, Godbout M-J, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro : keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci 1996; 109: 1017–28. [Google Scholar]
  38. Fradette J, Germain L, Seshaiah P, Coulombe PA. The type I keratin 19 possesses distinct and context-dependent assembly properties. J Biol Chem 1998; 273: 35176–84. [Google Scholar]
  39. Germain L, Michel M, Fradette J, Xu W, Godbout MJ, Li H. Skin stem cell identification and culture: a potential tool for rapid epidermal sheet production and grafting. In: Rouabhia M, ed. Skin substitute production by tissue engineering: clinical and fundamental applications. Austin: R.G. Landes Publishers, 1997: 177–210. [Google Scholar]
  40. Michel M, L’Heureux N, Auger FA, Germain L. From newborn to adult: phenotypic and functional properties of skin equivalent and human skin as a function of donor age. J Cell Physiol 1997; 171: 179–89. [Google Scholar]
  41. Damour O, Braye F, Foyatier J, et al. Cultured autologous epidermis for massive burn wounds: 15 years of practice. In: Rouabhia M, ed. Skin substitute production by tissue engineering: clinical and fundamental applications. Austin: R.G. Landes Publishers, 1997: 23–45. [Google Scholar]
  42. Auger FA. The role of cultured autologous human epithelium in large burn wound treatment. Transpl Impl Today 1988; 5: 21–4. [Google Scholar]
  43. Green H, Barrandon Y. Cultured epidermal cells and their use in the generation of epidermis. News Physiol Sci 1988; 3: 53–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.