Free Access
Med Sci (Paris)
Volume 19, Number 6-7, Juin-Juillet 2003
Page(s) 709 - 716
Section M/S Revues
Published online 15 June 2003
  1. Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369: 1–15. [Google Scholar]
  2. Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J 1998; 17: 2451–62. [Google Scholar]
  3. Chantalat L, Leroy D, Filhol O, et al. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc fingermediated dimerization. EMBO J 1999; 18: 2930–40. [Google Scholar]
  4. Chen M, Cooper JA. The β subunit of CKII negatively regulates Xenopus oocyte maturation. Proc Natl Acad Sci USA 1997; 94: 9136–40. [Google Scholar]
  5. Boldyreff B, Issinger OG. ARaf kinase is a new interacting partner of protein kinase CK2 β subunit. FEBS Lett 1997; 403: 197–9. [Google Scholar]
  6. Niefind K, Guerra B, Ermakowa I, Issinger OG. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 2001; 20: 5320–31. [Google Scholar]
  7. Pinna LA. Casein kinase 2: an eminence grise in cellular regulation ? Biochim Biophys Acta 1990; 1054: 267–84. [Google Scholar]
  8. Martel V, Filhol O, Nueda A, Gerber D, Benitez MJ, Cochet C. Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem 2001; 227: 81–90. [Google Scholar]
  9. Filhol O, Nueda A, Martel V, et al. Live cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 2003 (sous presse) [Google Scholar]
  10. Padmanabha R, Chen-Wu JL, Hanna DE, Glover CV. Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10: 4089–99. [Google Scholar]
  11. Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II α’ catalytic subunit. Nat Genet 1999; 23: 118–21. [Google Scholar]
  12. Bidwai AP, Reed JC, Glover CV. Cloning and disruption of CKB1, the gene encoding the 38-kDa β subunit of Saccharomyces cerevisiae casein kinase II (CKII). Deletion of CKII regulatory subunits elicits a saltsensitive phenotype. J Biol Chem 1995; 270: 10395–404. [Google Scholar]
  13. Roussou I, Draetta G. The Schizosaccharomyces pombe casein kinase IIα and β subunits: evolutionary conservation and positive role of the b subunit. Mol Cell Biol 1994; 14: 576–86. [Google Scholar]
  14. Buchou T, Vernet M, Blond O, et al. Disruption of the regulatory subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol ; 2003 23: 908–15. [Google Scholar]
  15. Hanna DE, Rethinaswamy A, Glover CV. Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem 1995; 270: 25905–14. [Google Scholar]
  16. Lorenz P, Pepperkok R, Ansorge W, Pyerin W. Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit β demonstrate participation of the kinase in mitogenic signaling. J Biol Chem 1993; 268: 2733–9. [Google Scholar]
  17. Pepperkok R, Lorenz P, Jakobi R, Ansorge W, Pyerin W. Cell growth stimulation by EGF: inhibition through antisenseoligodeoxynucleotides demonstrates important role of casein kinase II. Exp Cell Res 1991; 197: 245–53. [Google Scholar]
  18. Li D, Dobrowolska G, Aicher LD, et al. Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle. J Biol Chem 1999; 274: 32988–96. [Google Scholar]
  19. Vilk G, Saulnier RB, St Pierre R, Litchfield DW. Inducible expression of protein kinase CK2 in mammalian cells. Evidence for functional specialization of CK2 isoforms. J Biol Chem 1999; 274: 14406–14. [Google Scholar]
  20. Lebrin F, Chambaz EM, Bianchini L. A role for protein kinase CK2 in cell proliferation: evidence using a kinase-inactive mutant of CK2 catalytic subunit α. Oncogene 2001; 20: 2010–22. [Google Scholar]
  21. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K. Protein kinase CK2 signal in neoplasia. Histol Histopathol 2001; 16: 573–82. [Google Scholar]
  22. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 2001; 20: 3247–57. [Google Scholar]
  23. Seldin DC, Leder P. Casein kinase II α transgeneinduced murine lymphoma: relation to theileriosis in cattle. Science 1995; 267: 894–7. [Google Scholar]
  24. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC. p53 deficiency and misexpression of protein kinase CK2α collaborate in the development of thymic lymphomas in mice. Oncogene 1998; 16: 2965–74. [Google Scholar]
  25. Vilk G, Derksen DR, Litchfield DW. Inducible expression of the regulatory protein kinase CK2β subunit: incorporation into complexes with catalytic CK2 subunits and reexamination of the effects of CK2β on cell proliferation. J Cell Biochem 2001; 84: 84–99. [Google Scholar]
  26. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Traish AM, Mercurio F, Sonenshein GE. Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-κB in breast cancer. Cancer Res 2001; 61: 3810–8. [Google Scholar]
  27. Wang D, Westerheide SD, Hanson JL, Baldwin AS, Jr. Tumor necrosis factor α- induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 2000; 275: 32592–7. [Google Scholar]
  28. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD. Activation of nuclear transcription factor NF-κB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem 1997; 272: 32606–12. [Google Scholar]
  29. Krehan A, Ansuini H, Bocher O, Grein S, Wirkner U, Pyerin W. Transcription factors ets1, NF-κ B, and Sp1 are major determinants of the promoter activity of the human protein kinase CK2α gene. J Biol Chem 2000; 275: 18327–36. [Google Scholar]
  30. Chen S, Guttridge DC, You Z et al. Wnt-1 signaling inhibits apoptosis by activating β-catenin/T cell factor-mediated transcription. J Cell Biol 2001; 152: 87–96. [Google Scholar]
  31. Song DH, Sussman DJ, Seldin DC. Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem 2000; 275: 23790–7. [Google Scholar]
  32. Stambolic V, Mak TW, Woodgett JR. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene 1999; 18: 6094–103. [Google Scholar]
  33. Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114: 2375–82. [Google Scholar]
  34. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability toproteasome-mediated degradation. J Biol Chem 2001; 276: 993–8. [Google Scholar]
  35. Wang H, Davis A, Yu S, Ahmed K. Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem 2001; 227: 167–74. [Google Scholar]
  36. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501. [Google Scholar]
  37. Desagher S, Osen-Sand A, Montessuit S, et al. Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 2001; 8: 601–11. [Google Scholar]
  38. Li PF, Li J, Muller EC, Otto A, Dietz R, von Harsdorf R. Phosphorylation by protein kinase CK2: a signaling switch for the caspaseinhibiting protein ARC. Mol Cell 2002; 10: 247–58. [Google Scholar]
  39. Krippner-Heidenreich A, Talanian RV, Sekul R, et al. Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem J 2001; 358: 705–15. [Google Scholar]
  40. Songyang Z, Lu KP, Kwon YT, et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 1996; 16: 6486–93. [Google Scholar]
  41. Kusk M, Ahmed R, Thomsen B, Bendixen C, Issinger OG, Boldyreff B. Interactions of protein kinase CK2β subunit within the holoenzyme and with other proteins. Mol Cell Biochem 1999; 191: 51–8. [Google Scholar]
  42. Bren GD, Pennington KN, Paya CV. PKC-zeta associated CK2 participates in the turnover of free Iκ B α. J Mol Biol 2000; 297: 1245–58. [Google Scholar]
  43. Raman C, Kuo A, Deshane J, Litchfield DW, Kimberly RP. Regulation of casein kinase 2 by direct interaction with cell surface receptor CD5. J Biol Chem 1998; 273: 19183–9. [Google Scholar]
  44. Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 1997; 16: 3089–96. [Google Scholar]
  45. Li D, Meier UT, Dobrowolska G, Krebs EG. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem 1997; 272: 3773–9. [Google Scholar]
  46. Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C. Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon p53 phosphorylation. J Biol Chem 1992; 267: 20577–83. [Google Scholar]
  47. Bojanowski K, Filhol O, Cochet C, Chambaz EM, Larsen AK. DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J Biol Chem 1993; 268: 22920–6. [Google Scholar]
  48. Bonnet H, Filhol O, Truchet I, et al. Fibroblast growth factor-2 binds to the regulatory β subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 1996; 271: 24781–7. [Google Scholar]
  49. Theis-Febvre N, Filhol O, Froment C, et al. Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene 2003; 22: 220–32. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.