Free Access
Med Sci (Paris)
Volume 19, Number 6-7, Juin-Juillet 2003
Page(s) 683 - 694
Section M/S Revues
Published online 15 June 2003
  1. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283: 534–7. [Google Scholar]
  2. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 1997; 94: 4080–5. [Google Scholar]
  3. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA 1998; 95: 3908–13. [Google Scholar]
  4. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279: 1528–30. [Google Scholar]
  5. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401: 390–4. [Google Scholar]
  6. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284: 1168–70. [Google Scholar]
  7. Lagasse E, Connors H, Al- Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6: 1229–34. [Google Scholar]
  8. Labarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002; 111: 589–601. [Google Scholar]
  9. Theise ND, Badve S, Saxena R, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 2000; 31: 235–40. [Google Scholar]
  10. Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999; 96: 14482–6. [Google Scholar]
  11. Seale P, Sabourin LA, Girgis-Gabardo A, et al. Pax7 is required for the specification of myogenic satellite cells. Cell 2000; 102: 777–86 [Google Scholar]
  12. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–82 [Google Scholar]
  13. Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000; 290: 1775–9. [Google Scholar]
  14. Korbling M, Katz R, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002; 346: 738–46. [Google Scholar]
  15. Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003; 361: 45–6. [Google Scholar]
  16. Tran SD, Pillemer SR, Dutra A, et al. Differentiation of human bone marrowderived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet 2003; 361: 1084–8. [Google Scholar]
  17. Ito T. Stem cells of the adult kidney: where are you from ? Nephrol Dial Transplant 2003; 18: 641–4. [Google Scholar]
  18. Morrison SJ. Stem cell potential: can anything make anything ? Curr Biol 2001; 11: R7–9. [Google Scholar]
  19. Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries ? Nat Med 2001; 7: 393–5. [Google Scholar]
  20. Pearson H. The regeneration gap. Nature 2001; 414: 388–90. [Google Scholar]
  21. Echeverri K, Tanaka EM. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 2002; 298: 1993–6. [Google Scholar]
  22. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110: 1001–2. [Google Scholar]
  23. Osawa M, Hanada K, Hamada H, Nakauchi H. Hematopoietic stem cells. Science 1996; 273: 242–5. [Google Scholar]
  24. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–806. [Google Scholar]
  25. Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999; 96: 737–49. [Google Scholar]
  26. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 2001; 104: 233–45. [Google Scholar]
  27. Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays 2002; 24: 91–8. [Google Scholar]
  28. Cossu G, Mavilio F. Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective ? J Clin Invest 2000; 105: 1669–74. [Google Scholar]
  29. S. Sell. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 2001; 33: 738–50. [Google Scholar]
  30. Wright D, Wagers A, Gulati A, Johnson F, Weissman I. Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294: 1933–6. [Google Scholar]
  31. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002; 298: 601–4 [Google Scholar]
  32. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. «Stemness»: transcriptional profiling of embryonic and adult stem cells. Science 2002; 298: 597–600 [Google Scholar]
  33. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997; 88: 287–98. [Google Scholar]
  34. Lansdorp PM. Self-renewal of stem cells. Biol Blood Marrow Transplant 1997; 3: 171–8. [Google Scholar]
  35. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297: 2256–9. [Google Scholar]
  36. Robin C, Pflumio F, Vainchenker W, Coulombel L. Identification of lymphomyeloid primitive progenitor cells in fresh human cord blood and in the marrow of nonobese diabetic-severe combined immunodeficient (NODSCID) mice transplanted with human CD34+ cord blood cells. J Exp Med 1999; 189: 1601–10 [Google Scholar]
  37. Pittenger M, Mackay A, Beck S, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–7. [Google Scholar]
  38. Noel D, Djouad F, Jorgense C. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs 2002; 3: 1000–4. [Google Scholar]
  39. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 2003; 160: 909–18. [Google Scholar]
  40. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–9. [Google Scholar]
  41. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002; 30: 896–904. [Google Scholar]
  42. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–5. [Google Scholar]
  43. Ying Q, Nichols J, Evans E, Smith A. Changing potency by spontaneous fusion. Nature 2002; 416: 545–8. [Google Scholar]
  44. Spees JL, Olson SD, Ylostalo J, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 2003; 100: 2397–402. [Google Scholar]
  45. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003; 422: 901–4. [Google Scholar]
  46. Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003; 422: 897–901. [Google Scholar]
  47. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo Jm, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36: 1021–34. [Google Scholar]
  48. Morshead CM, Benveniste P, Iscove NN, Van Der Kooy D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 2002; 8: 268–73. [Google Scholar]
  49. Tamaki T, Akatsuka A, Anado K, et al. Identification of myogenicendothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 2002; 157: 571–7. [Google Scholar]
  50. Avital I, Inderbitzin D, Aoki T, et al. Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem Biophys Res Commun 2002; 288: 156–64. [Google Scholar]
  51. Wang E, Montini E, Al- Dhalimy M, Lagasse E, Finegold M, Grompe M. Kinetics of liver repopulation after bone marrow transplantation. Am J Pathol 2002; 161: 565–74. [Google Scholar]
  52. Muller WA. Pattern formation in the immortal Hydra. Trends Genet 1996; 12: 91–6. [Google Scholar]
  53. Kawada H, Ogawa M. Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 2001; 98: 2008–13. [Google Scholar]
  54. Mckinney-Freeman S, Jackson K, Camargo F, et al. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 2002; 99: 1341–6. [Google Scholar]
  55. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003; 100: 1364–9. [Google Scholar]
  56. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 2003; 100: 2088–93. [Google Scholar]
  57. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109: 337–46. [Google Scholar]
  58. Orlic D, Hill JM, Arai AE. Stem cells for myocardal regeneration. Circ Res 2002; 91: 1092–102. [Google Scholar]
  59. Stamm C, Westphal B, Kleine HD, et al. Autologous bone marrow stem cell transplantation for myocardial regeneration. Lancet 2003; 361: 45–6. [Google Scholar]
  60. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–5. [Google Scholar]
  61. Bachoud-Levi AC, Remy P, Nguyen JP, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000; 356: 1975–9. [Google Scholar]
  62. Ryan EA, Lakey JR, Paty BW, et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 2002; 51: 2148–57. [Google Scholar]
  63. Ferrari G, Stornaiuolo A, Mavilio F. Failure to correct murine muscular dystrophy. Nature 2001; 411: 1014–5. [Google Scholar]
  64. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110: 429–41. [Google Scholar]
  65. Kruger GM, Morrison SJ. Brain repair by endogenous progenitors. Cell 2002; 110: 399–402 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.