Free Access
Issue
Med Sci (Paris)
Volume 19, Number 3, Mars 2003
Page(s) 364 - 367
Section M/S Revues : Dossier Technique
DOI https://doi.org/10.1051/medsci/2003193364
Published online 15 March 2003
  1. Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 1997; 94: 4853–60. [Google Scholar]
  2. Townes-Anderson E, St Jules RS, Sherry DM, Lichtenberg J, Hassanain M. Micromanipulation of retinal neurons by optical tweezers. Mol Vision 1998; 4: 12. http://www.molvis.org/molvi s/v4/p12 [Google Scholar]
  3. Konig K, Svaasand L, Liu Y, et al. Determination of motility forces of human spermatozoa using an 800 nm optical trap. Cell Mol Biol 1996; 422: 501–9 [Google Scholar]
  4. Schütze K, Clement- Sengewald A, Ashkin A. Zona drilling and sperm insertion with combined laser microbeam and optical tweezers. Fertil Steril 1994; 61: 783–6. [Google Scholar]
  5. Kuo SC. Using optics to measure biological forces and mechanics. Traffic 2001; 11: 757–63. [Google Scholar]
  6. Sleep J, Wilson D, Simmons R, Gratzer W. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys J 1999; 77: 3085–95. [Google Scholar]
  7. Kellermayer MS, Smith SB, Bustamante C, Granzier HL. Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 2001; 80: 852–63. [Google Scholar]
  8. Coirault C, Samuel JL, Chemla D, et al. Increased compliance in diaphragm muscle of the cardiomyopathic syrian hamster. J Appl Physiol 1998; 85: 1762–9. [Google Scholar]
  9. Bustamante C, Smith SB, Liphardt J, Smith D. Singlemolecule studies of DNA mechanics. Curr Opin Struct Biol 2000; 10: 279–85. [Google Scholar]
  10. Bustamante C, Macosko JC, Wuite GJL. Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 2000; 1: 130–6. [Google Scholar]
  11. Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM. Single-molecule biomechanics with optical methods. Science 1999; 283: 1689–95. [Google Scholar]
  12. Woehlke G, Schliwa M. Walking on two heads: the many talents of kinesin. Nat Rev Mol Cell Biol 2000; 1:50–8. [Google Scholar]
  13. Block SM, Goldstein LS, Schnapp B. Bead movement by single kinesin molecules studied with optical tweezers. Nature 1990; 348: 348–52. [Google Scholar]
  14. Gelles J, Landick R. RNA polymerase as a molecular motor. Cell 1998; 93: 13–6. [Google Scholar]
  15. Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta 2000; 1496: 3–22. [Google Scholar]
  16. Huxley AF. Cross-bridge action: present views, propects, and unknowns. J Biomech 2000; 33: 1189–95. [Google Scholar]
  17. Spudich JA. The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol 2001; 2: 387–92. [Google Scholar]
  18. Knight AE, Veigel C, Chambers C, Molloy JE. Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog Biophys Mol Biol 2001; 77: 45–72. [Google Scholar]
  19. Coirault C, Lambert F, Pourny JC, Lecarpentier Y. Velocity of actomyosin sliding in vitro is reduced in dystrophic mouse diaphragm. Am J Respir Crit Care Med 2002; 165: 250–3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.