Free Access
Issue
Med Sci (Paris)
Volume 19, Number 1, Janvier 2003
Page(s) 55 - 62
Section M/S Revues
DOI https://doi.org/10.1051/medsci/200319155
Published online 15 January 2003
  1. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet 1991; 25: 229–53. [Google Scholar]
  2. Schaaper RM, Radman M. The extreme mutator effect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J 1989; 8: 3511–6. [Google Scholar]
  3. Cheng KC, Loeb LA. Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res 1993; 60: 121–56. [Google Scholar]
  4. Wagner R, Meselson M. Repair tracts in mismatched DNA heteroduplexes. Proc Natl Acad Sci USA 1976; 73: 4135–9. [Google Scholar]
  5. Lahue RS, Au KG, Modrich P. DNA mismatch correction in a defined system. Science 1989; 245: 160–4. [Google Scholar]
  6. Radman M, Wagner RE, Glickman RW, Meselson M. DNA methylation, mismatch correction and genetic stability. Prog Environment Carcinogen 1984; 121–30. [Google Scholar]
  7. Aaltonen LA, Peltomäki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260: 812–6. [Google Scholar]
  8. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993; 260: 816–9. [Google Scholar]
  9. Ionov Y, Peinado M, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993; 363: 558–61. [Google Scholar]
  10. Lynch HT, Smyrk TC, Watson P, et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 1993; 104: 1535–49. [Google Scholar]
  11. Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994; 368: 258–61. [Google Scholar]
  12. Papadopoulos N, Nicolaïdes NC, Wei YF, et al. Mutation of a MutL homolog in hereditary colon cancer. Science 1994; 263: 1625–9. [Google Scholar]
  13. Leach FS, Nicolaïdes NC, Papadopoulos N, et al. Mutation of a MutS homolog in hereditary non polyposis colorectal cancer. Cell 1993; 75: 1215–25. [Google Scholar]
  14. Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in hereditary non polyposis colon cancer. Nature 1994; 371: 75–80. [Google Scholar]
  15. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248–57. [Google Scholar]
  16. Elsaleh H, Joseph D, Grieu F, et al. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 2000; 355: 1745–50. [Google Scholar]
  17. Hemminki A, Mecklin JP, Jarvinen H, Aaltonen LA, Joensuu H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 2000; 119: 921–8. [Google Scholar]
  18. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336–8. [Google Scholar]
  19. Souza RF, Appel R, Yin J, et al. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 1996; 14: 255–7. [Google Scholar]
  20. Malkhosyan S, Rampino N, Yamamoto H, Perucho M. Frameshift mutator mutations. Nature 1996; 382: 499–500. [Google Scholar]
  21. Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275: 967–9. [Google Scholar]
  22. Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancer: toward a new concept of target genes for instability. Cancer Res 2002; 62: 2447–54. [Google Scholar]
  23. Liu W, Dong X, Mai M, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating betacatenin/ TCF signalling. Nat Genet 2000; 26: 146–7. [Google Scholar]
  24. Duval A, Gayet J, Zhou XP, et al. Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 1999; 59: 4213–5. [Google Scholar]
  25. Guanti G, Resta N, Simone C, et al. Involvement of PTEN mutations in the genetic pathways of colorectal cancerogenesis. Hum Mol Genet 2000; 9: 283–7. [Google Scholar]
  26. Chadwick RB, Jiang GL, Bennington GA, et al. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc Natl Acad Sci USA 2000; 97: 2662–7. [Google Scholar]
  27. Schwartz S, Yamamoto H, Navarro M, et al. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 2000; 59: 2995–3002. [Google Scholar]
  28. Loukola A, Vilkki S, Singh J, Launonen V, Aaltonen LA. Germline and somatic mutation analysis of MLH3 in MSI-positive colorectal cancer. Am J Pathol 2000; 157: 347–52. [Google Scholar]
  29. Duval A, Rolland S, Compoint A, et al. Evolution of instability at coding and non-coding repeat sequences in human MSI-H colorectal cancers. Hum Mol Genet 2001; 10: 513–8. [Google Scholar]
  30. Duval A, Rolland S, Tubacher E, et al. The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 2000; 60: 3872–9. [Google Scholar]
  31. Perucho M. Correspondence re: C.R. Boland et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer (Cancer Res 1998; 58: 5248–57). Cancer Res 1999; 59: 249- 56. [Google Scholar]
  32. Suraweera N, Iacopetta B, Duval A, et al. Conservation of mononucleotide repeats within 3’ and 5’ untranslated regions and their instability in MSI-H colorectal cancer. Oncogene 2001; 20: 7472–7. [Google Scholar]
  33. Zhou XP, Hoang JM, Li YJ, et al. Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosom Cancer 1998; 21: 101–7. [Google Scholar]
  34. Duval A, Iacopetta B, Thorntensen L, et al. Gender difference for mismatch repair deficiency in human colorectal cancer. Gastroenterology 2001; 121: 1026–7. [Google Scholar]
  35. Pedroni M, Sala E, Scarselli A, et al. Microsatellite instability and mismatchrepair protein expression in hereditary and sporadic colorectal carcinogenesis. Cancer Res 2001; 61: 896–9. [Google Scholar]
  36. Grady WM, Rajput A, Myeroff L, et al. Mutation of the type II transforming growth factor-β receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 1998; 58: 3101–4. [Google Scholar]
  37. Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991; 51: 3075–9. [Google Scholar]
  38. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992; 71: 543–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.